(2013·黄冈模拟)为了利用开发海洋资源,某勘测飞机欲测量一岛屿的两端A、B的距离,飞机在距海平面垂直高度300米的C处测得端点A的俯角为60°,然后飞机沿着俯角30°的方向俯冲到D点,发现端点B的俯角为45°,而此时飞机距离海平面的垂直高度为100米,求岛屿两端A、B的距离.(结果精确到0.1米,| 3 |
| 2 |
(2013·鹤壁二模)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:
(2013·高淳县二模)如图,某时刻飞机A、B处于同一高度,此时从地面雷达C测得飞机A的仰角∠DCA=40°,与雷达C的距离CA=90千米;测得飞机B的仰角∠DCB=35°,与雷达C的距离CB=100千米.则此时飞机A、B相距多少千米?(精确到0.1千米)(参考数据:cos40°=0.77,sin40°=0.64,cos35°=0.82,sin35°=0.57)
(2013·阜宁县一模)如图,测量金沙湖BC的长度,现在距地面1500m高的A处的飞机上,测得正前方湖的两端B、C两点处的俯角分别为60°和45°,求湖长BC.(参考数据:| 3 |
(2013·保定一模)如图,AB表示的是某单位办公楼的高,AE表示从楼顶垂挂下的宣传条幅,其长为30米,CD表示张明同学所处的位置与高度,张明同学测得条幅顶端A的仰角为60°,测得条幅底端E的仰角为30°.求张明同学到办公楼的水平距离(精确到整米数).| 2 |
| 3 |
(2013·鞍山一模)校园中的一棵大树PC在阳光下的影长为AC,在树的影长端点A处测得∠PAC=30°,在B点(点B在直线AC上)测得∠PBC=60°,如果AB=12m,求树高PC和树的影长AC.
(2013·安庆二模)已知:如图,斜坡AP的长为13米,高AH为5米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A测得该塔的塔顶B的仰角为76°,求古塔BC的高度(结果精确到1米)(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
(2013·安徽模拟)小明利用测角仪测量学校内一棵大树的高度,已知他离树的水平距离BC为12m,测角仪的高度CD为1.4m,测到树顶A的仰角为50°,求树的高度AB.
(2012·同安区一模)课外实践活动中,数学老师带领学生测量学校旗杆的高度.如图,在距离旗杆10米的A处用测角仪(离地高度为1.5米)测得旗杆顶端的仰角为43°,求旗杆BC的高度.(结果精确到0.1)| 3 |
分钟后到B处时测得搜救船在俯角为60°的海面D处,求搜救船平均速度.(保留三位有效数字;参考数据| 2 |
| 3 |