试题

题目:
青果学院(2013·高淳县二模)如图,某时刻飞机A、B处于同一高度,此时从地面雷达C测得飞机A的仰角∠DCA=40°,与雷达C的距离CA=90千米;测得飞机B的仰角∠DCB=35°,与雷达C的距离CB=100千米.则此时飞机A、B相距多少千米?(精确到0.1千米)(参考数据:cos40°=0.77,sin40°=0.64,cos35°=0.82,sin35°=0.57)
答案
青果学院解:过A作CD的垂线AM,过B作CD的垂线BN,垂足分别为M、N.
在Rt△AMC中,cos∠MCA=
CM
CA

∴CM=90cos40°=69.3,
在Rt△BNC中,cos∠NCB=
CN
CB

∴CN=100cos35°=82
∴MN=CN-CM=12.7千米,
由已知,AM=BN,AM⊥CD,BN⊥CD
∴AMNB为矩形
∴AB=MN=12.7.
即此时飞机A、B相距12.7千米.
青果学院解:过A作CD的垂线AM,过B作CD的垂线BN,垂足分别为M、N.
在Rt△AMC中,cos∠MCA=
CM
CA

∴CM=90cos40°=69.3,
在Rt△BNC中,cos∠NCB=
CN
CB

∴CN=100cos35°=82
∴MN=CN-CM=12.7千米,
由已知,AM=BN,AM⊥CD,BN⊥CD
∴AMNB为矩形
∴AB=MN=12.7.
即此时飞机A、B相距12.7千米.
考点梳理
解直角三角形的应用-仰角俯角问题.
首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造等量关系,进而可求出答案.
考查了解直角三角形的应用-仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.
找相似题