数学
(2000·山西)请阅读下面材料,并回答所提出的问题.
三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.
已知:如图,△ABC中,AD是角平分线.
求证:
BD
DC
=
AB
AC
分析:要证
BD
DC
=
AB
AC
,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在三角形相似.现在B、D、C在一直线上,△ABD与△ADC不相似,需要考虑用别的方法换比.在比例式
BD
DC
=
AB
AC
中,AC恰是BD、DC、AB的第四比例项,所以考虑过C作C
E∥AD,交BA的延长线于E,从而得到BD、DC、AB的第四比例项AE,这样,证明
BD
DC
=
AB
AC
就可以转化成证AE=AC.
证明:过C作CE∥DA,交BA的延长线于E.
CE∥DA
·
∠1=∠E
∠2=∠3
∠1=∠2
·∠E=∠3·AE=AC
,
CE∥DA
·
BD
DC
=
BA
AE
AE=AC
·
BD
DC
=
AB
AC
(1)上述证明过程中,用到了哪些定理?(写对两个定理即可)
(2)在上述分析、证明过程中,主要用到了下列三种数学思想的哪一种?选出一个填在后面的括号内.
[]
①数形结合思想;
②转化思想;
③分类讨论思想.
(3)用三角形内角平分线性质定理解答问题:
已知:如图,△ABC中,AD是角平分线,AB=5cm,AC=4cm,BC=7cm.求BD的长.
(2009·静安区三模)已知:如图,点E为·ABCD对角线AC上的一点,点F在BE的延长线上,且EF=BE,EF与CD相交于点G.
求证:DF∥AC.
(请用两种方法证明,可以添辅助线,可以不添辅助线,如果两种方法都添辅助线,要求是不同位置的线.)
(2006·静安区一模)已知:如图,在平行四边形ABCD中,E是边AB的中点,点F在边BC上,且CF=3BF,EF与BD相交于点G.
求证:DG=5BG.
△ABC中,AB=1,AC=2,D是BC中点,AE平分∠BAC交BC于E,且DF∥AE.求CF的长.
(1997·河北)已知:如图,DE∥BC,AD=3.6,DB=2.4,AC=7.求EC的长.
(2013·河东区二模)如图,AB是⊙O的直径,C是AB延长线上一点,且BC=OB,CE与⊙O交于点D,过点A作AE⊥CE,垂足为E,连接AD,∠DAC=∠C.
(Ⅰ)求证:直线CE是⊙O的切线.
(Ⅱ)求
CD
DE
的值.
(2012·顺义区二模)如图,在矩形ABCD中,E是边CB延长线上的点,且EB=AB,DE与AB相交于点F,AD=2,CD=1,求AE及DF的长.
(2012·上海模拟)已知:如图,在梯形ABCD中,AD∥BC,点E、F分别是边BC、CD的中点,直线EF交边AD的延长线于点M,交边AB的延长线于点N,连接BD.
(1)求证:四边形DBEM是平行四边形;
(2)连接CM,当四边形ABCM为平行四边形时,求证:MN=2DB.
(2012·虹口区二模)如图,已知ED∥BC,GB
2
=GE·GF
(1)求证:四边形ABCD为平行四边形;
(2)连接GD,若GB=GD,求证:四边形ABCD为菱形.
(2011·嘉定区一模)如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥BC交AB于点E,DE=4,BC=6,AD=5.求DC与AE的长.
第一页
上一页
41
42
43
44
45
下一页
最后一页
168612
168613
168614
168615
168616
168617
168618
168619
168621
168623