数学
如图,在半径为5的⊙O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动.
(1)当点P与点C关于AB对称时,求CP的长;
(2)当点P运动到弧AB的中点时,求CP的长;
(3)点P在弧AB上运动时,求CP的长的取值范围.
在重心为G的钝角△ABC中,若边BC=1,∠A=30°,且D点平分BC.当A点变动,B、C不动时,求DG长度的取值范围.
在圆中,一条弧所对的圆心角和圆周角分别为(2x+100)°和(5x-30)°,求这条弦所对的圆心角和圆周角的度数.
如图所示,梯形ABCD中,AB∥DC,AB⊥BC,AB=2,CD=4,以BC上一点O为圆心经过A,D两点,∠AOD=90°,求O到AD的距离.
如图,⊙O中,OA⊥BC,∠CDA=35°,求∠AOB的度数.
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O与点F.
(1)AB与AC的大小有什么关系?为什么?
(2)按角的大小分类,请你判断△ABC属于哪一类三角形.
已知:如图,AB是⊙O的直径,OD⊥BC于D,AC=8cm,求OD的长.
如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.
(1)求证:AD=AN;
(2)若AB=4
2
,ON=1,求⊙O的半径.
如图所示,AB是直径,D是圆上任意一点,C不与A、B重合,连接BD,并延长得到C,使DC=DB,连接AC,判断△ABC形状.并说明理由.
如图,四边形ABCD的四个顶点在⊙O上,且对角线AC⊥BD,OE⊥BC于E,求证:OE=
1
2
AD.
第一页
上一页
8
9
10
11
12
下一页
最后一页
149259
149260
149261
149262
149263
149264
149265
149266
149267
149268