数学
如图,△ABC是等腰直角三角形,∠ACB=90°,O为AB的中点,点D为AB边上任意一点,以D为顶点作等腰直角三角形DEF,斜边EF经过点O,且使EO=OF,连结CF、BF、CD,很明显点C、F、O在同一条直线上
(1)请写出线段BF与CD的数量、位置关系,并证明;
(2)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;
(3)如图②,线段BF的延长线与CD相交于G点,求出∠OGD的度数
45°
45°
.
如图:已知D为等腰直角△ABC斜边BC上的一个动点(D与B、C均不重合),连结AD,△ADE是等腰直角三角形,DE为斜边,连结CE.
①判断∠ECD的度数并说明理由.
②当△ABC、△ADE都是等边三角形,D点为△ABC中BC边上的一个动点(D与B、C均不重合),当点D运动到什么位置时,△DCE的周长最小?请探求点D的位置,并说明理由及求出此时∠EDC的度数.
如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.
(1)求证:△ADF≌△CEF;
(2)试证明△DFE是等腰直角三角形.
如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.求证:AD
2
+AE
2
=DE
2
.
如图,在直角三角形ABC和直角三角形ADE中,AB=AC,AD=AE,CE与BD交于点M,BD交AC于N.
①求证:BD=CE;
②求证:BD⊥CE;
③当三角形ABC绕点A顺时针方向旋转到如图②的位置时,上述结论是否成立?请选择一个结论给予证明.
如图(1),△ACB和△ECD均为等腰直角三角形,∠ACB=∠ECD=90°,把△ECD绕点C逆时针旋转,使点D在AB上,如图(2),连接AE.
(1)求证:△ACE≌△BCD;
(2)如图(2),若AB=4,ED=
10
,求△ADE的面积.
如图,在△ABC中,∠ACB=90°,AC=BC=2,以BC为一边,在△ABC的外部作△BCE,使△BCE是等腰直角三角形,求线段AE的长.
以等腰直角△ABC的斜边AB所在的直线为对称轴,作这个△ABC的对称图形△ABC′,则所得到的四边形ACBC′一定是
正方形
正方形
.
如图,P为△ABC边BC上的一点,且PC=2a,PB=a,∠ABC=45°,∠APC=60°,则AP的长是
(
3
+1)a
(
3
+1)a
.
已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点F、F,若FC=3厘米,BE=4厘米,则△EFP的面积为
25
4
25
4
平方厘米.
第一页
上一页
28
29
30
31
32
下一页
最后一页
108620
108621
108623
108625
108627
108629
108631
108633
108635
108637