试题

题目:
如图,在直角三角形ABC和直角三角形ADE中,AB=AC,AD=AE,CE与BD交于点M,BD交AC于N.
青果学院
①求证:BD=CE;
②求证:BD⊥CE;
③当三角形ABC绕点A顺时针方向旋转到如图②的位置时,上述结论是否成立?请选择一个结论给予证明.
答案
①证明:∵△ABC和△ADE是等腰直角三角形,
∴∠BAC=∠EAD=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD,
即∠BAD=∠EAC,
∵在△BAD和△CAE中
BA=AC
∠BAD=∠CAE
AE=AD

∴△BAD≌△CAE(SAS),
∴BD=CE;

②证明:∵△BAD≌△CAE,青果学院
∴∠AEC=∠ADB,
∵∠EAD=90°,
∴∠1+∠AEC=90°,
∵∠1=∠2,
∴∠2+∠ADB=90°,
∴∠DME=180°-90°=90°,
∴BD⊥CE;

③解:当三角形ABC绕点A顺时针方向旋转到如图②的位置时,上述结论还成立,
理由是:延长DB交CE于F,
∵在△BAD和△CAE中
AC=AB
∠CAE=∠BAD=90°
AE=AD

∴△BAD≌△CAE(SAS),
∴BD=CE,∠AEC=∠ADB,
∵∠EAD=90°,
∴∠4+∠ADB=90°,
∵∠3=∠4,
∴∠3+∠AEC=90°,
∴∠5=180°-90°=90°,
∴BD⊥CE,
即当三角形ABC绕点A顺时针方向旋转到如图②的位置时,上述结论还成立.
①证明:∵△ABC和△ADE是等腰直角三角形,
∴∠BAC=∠EAD=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD,
即∠BAD=∠EAC,
∵在△BAD和△CAE中
BA=AC
∠BAD=∠CAE
AE=AD

∴△BAD≌△CAE(SAS),
∴BD=CE;

②证明:∵△BAD≌△CAE,青果学院
∴∠AEC=∠ADB,
∵∠EAD=90°,
∴∠1+∠AEC=90°,
∵∠1=∠2,
∴∠2+∠ADB=90°,
∴∠DME=180°-90°=90°,
∴BD⊥CE;

③解:当三角形ABC绕点A顺时针方向旋转到如图②的位置时,上述结论还成立,
理由是:延长DB交CE于F,
∵在△BAD和△CAE中
AC=AB
∠CAE=∠BAD=90°
AE=AD

∴△BAD≌△CAE(SAS),
∴BD=CE,∠AEC=∠ADB,
∵∠EAD=90°,
∴∠4+∠ADB=90°,
∵∠3=∠4,
∴∠3+∠AEC=90°,
∴∠5=180°-90°=90°,
∴BD⊥CE,
即当三角形ABC绕点A顺时针方向旋转到如图②的位置时,上述结论还成立.
考点梳理
全等三角形的判定与性质;等腰直角三角形.
①根据直角三角形性质得出∠BAC=∠EAD=90°,推出∠BAD=∠EAC,根据SAS证△BAD≌△CAE,推出BD=CE即可;
②根据全等三角形的性质推出∠AEC=∠ADB,根据∠1+∠AEC=90°推出∠2+∠ADB=90°,求出∠DME=90°,根据垂直定义求出即可;
③延长DB交CE于F,根据SAS证△BAD≌△CAE,推出BD=CE,∠AEC=∠ADB,求出∠3+∠AEC=90°,求出∠5=90°,根据垂直定义求出即可.
本题考查了全等三角形的性质和判定,垂直定义,三角形的内角和定理等知识点,通过做此题培养了学生的猜想能力和推理能力,题目具有一定的代表性,是一道比较好的题目.
找相似题