数学
(2011·中山区一模)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE是⊙O的切线,交AC的延长
线于点E.求证:
(1)DE⊥AC;
(2)若AE=4,ED=2,求⊙O的半径.
(2009·十堰)如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.
(1)求证:DE-BF=EF;
(2)当点G为BC边中点时,试探究线段EF与GF之间的数量关系,并说明理由;
(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).
(2009·陕西)如图,圆O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P.
(1)求证:AP是圆O的切线;
(2)若圆O的半径R=5,BC=8,求线段AP的长.
(2009·泉州)在直角坐标系中,点A(5,0)关于原点O的对称点为点C.
(1)请直接写出点C的坐标;
(2)若点B在第一象限内,∠OAB=∠OBA,并且点B关于原点O的对称点为点D.
①试判断四边形ABCD的形状,并说明理由;
②现有一动点P从B点出发,沿路线BA-AD以每秒1个单位长的速度向终点D运动,另一动点Q从A点同时出发,沿AC方向以每秒0.4个单位长的速度向终点C运动,当其中一个动点到达终点时,另一个动点也随之停止运动.已知AB=6,设点P、Q的运动时间为t秒,在运动过程中,当动点Q在以PA为直径的圆上时,试求t的值?
(2009·清远)如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连接AC.
(1)求证:△ABC∽△POA;
(2)若OB=2,OP=
7
2
,求BC的长.
(2009·黔南州)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.
(1)DE与半圆0是否相切?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x
2
-16x+60=0的两个根,求直角边BC的长.
(2009·聊城)如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO并延长交AC于点G,AB=4,AG=2.
(1)求∠A的度数;
(2)求⊙O的半径.
(2009·辽阳)如图1,在直角梯形ABCD中,CD∥AB,CB⊥AB,BC=6cm,DC=6cm,AD=10cm
(1)求AB的长.
(2)操作:如图2,过点D作DE⊥AB于E.将直角梯形ABCD沿DE剪开,得到四边形DEBC和△ADE.四边形DEBC不动,将△ADE沿射线AD的方向,以每秒1cm的速度平移,当点A平移到点D时,停止平移.
探究:设在平移过程中,△ADE与四边形DEBC重叠部分的面积为ycm
2
,平移时间为x秒,求y与x的函数关系式,并直接写出自变量x的取值范围?
(2009·乐山)本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
甲题:关于x的一元二次方程x
2
+(2k-3)x+k
2
=0有两个不相等的实数根α、β.
(1)求k的取值范围;
(2)若α+β+αβ=6,求(α-β)
2
+3αβ-5的值.
乙题:如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=
1
4
DC,连接EF并延长交BC的延长线于点G
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
(2009·兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A·B·C·D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A·B·C·D匀速运动时,OP与PQ能否相等?若
能,写出所有符合条件的t的值;若不能,请说明理由.
第一页
上一页
251
252
253
254
255
下一页
最后一页
173251
173253
173254
173255
173256
173257
173258
173259
173260
173261