试题
题目:
(2009·辽阳)如图1,在直角梯形ABCD中,CD∥AB,CB⊥AB,BC=6cm,DC=6cm,AD=10cm
(1)求AB的长.
(2)操作:如图2,过点D作DE⊥AB于E.将直角梯形ABCD沿DE剪开,得到四边形DEBC和△ADE.四边形DEBC不动,将△ADE沿射线AD的方向,以每秒1cm的速度平移,当点A平移到点D时,停止平移.
探究:设在平移过程中,△ADE与四边形DEBC重叠部分的面积为ycm
2
,平移时间为x秒,求y与x的函数关系式,并直接写出自变量x的取值范围?
答案
解:(1)如图,过点D作DE⊥AB于E,
∵CB⊥AB,CD∥AB,
∴∠C=∠B=∠DEB=90°,
∴四边形DEBC为矩形,
∴DE=CD=6,DE=BC=6,
∴在Rt△ADE中,AE=8,
∴AB=8+6=14;
(2)如图,当0≤x≤10时,
由平移得,DD′=AA′=x.
∵DF∥A′E′,
∴∠D′DF=∠DA′M,∠D′FD=∠E′
∴△D′DF∽△D′A′E′,
∴
D′D
D′A′
=
D′F
D′E′
=
DF
A′E′
∴DF=8×
x
10
=
4x
5
D′F=6×
x
10
=
3x
5
∴E′F=6-
3x
5
,
∴y=(6-
3x
5
)·
4x
5
,
∴y=
-
12
25
x
2
+
24
5
x
(0≤x≤7.5);
当△ADE平移到DE与BC在同一条直线之后,y=-3.6x+36(7.5≤x≤10).
解:(1)如图,过点D作DE⊥AB于E,
∵CB⊥AB,CD∥AB,
∴∠C=∠B=∠DEB=90°,
∴四边形DEBC为矩形,
∴DE=CD=6,DE=BC=6,
∴在Rt△ADE中,AE=8,
∴AB=8+6=14;
(2)如图,当0≤x≤10时,
由平移得,DD′=AA′=x.
∵DF∥A′E′,
∴∠D′DF=∠DA′M,∠D′FD=∠E′
∴△D′DF∽△D′A′E′,
∴
D′D
D′A′
=
D′F
D′E′
=
DF
A′E′
∴DF=8×
x
10
=
4x
5
D′F=6×
x
10
=
3x
5
∴E′F=6-
3x
5
,
∴y=(6-
3x
5
)·
4x
5
,
∴y=
-
12
25
x
2
+
24
5
x
(0≤x≤7.5);
当△ADE平移到DE与BC在同一条直线之后,y=-3.6x+36(7.5≤x≤10).
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;勾股定理;直角梯形;平移的性质.
(1)通过作辅助线,过点D作DE⊥AB于E,很容易就可求出AB的长度;
(2)根据平移的性质,DD′=AA′=x,然后结合图形和题意,即可推出△D′DF∽△D′A′E′,根据对应边的比例相等的性质,即可推出y关于x的解析式.
本题主要考查了相似三角形的判定和性质、勾股定理、平移的性质、直角梯形的性质,解题的关键在于求出三角形相似、作辅助线构造直角三角形.
压轴题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )