三角形的内切圆与内心;正方形的性质;平行线分线段成比例;相似三角形的判定与性质.
(1)由于已知了∠DEF的度数,那么可连接OD,OF,那么∠DOF=2∠DEF=90°,根据AD,AF是圆的切线,那么OD⊥AB,OF⊥AC,由此可得出∠A的度数.
(2)根据(1)的结论我们不难得出ADOF是个正方形,那么OD=AD=AF=OF就都等于圆的半径长,那么可用半径表示出BD的长,根据OD∥AC,我们可以得出关于BD,AB,OD,AG的比例关系式.已知了AG,AB的长就能求出半径的长了.
本题考查了切线的性质,圆周角定理,相似三角形等知识点综合应用.根据圆周角定理和切线的性质得出ADOF是正方形是解题的关键.
几何综合题;压轴题.