数学
(2009·襄阳)如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是
BC
上一点,连接AF交CE于H,连接AC、CF、BD、OD.
(1)求证:△ACH∽△AFC;
(2)猜想:AH·AF与AE·AB的数量关系,并说明你的猜想;
(3)探究:当点E位于何处时,S
△AEC
:S
△BOD
=1:4,并加以说明.
(2009·湘潭)如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q.
(1)当点P在线段AB上运动(不与A,B重合)时,求证:OA·BQ=AP·BP;
(2)在(1)成立的条件下,设点P的横坐标为m,线段CQ的长度为l,求出l关于m的函数解析式,并判断l是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;
(3)直线AB上是否存在点P,使△POQ为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
(2011·郑州模拟)如图,在平面直角坐标系中,x 轴上有两点A(-2,0),B(2,0),以AB为边在x轴上方作正方
形ABCD,点E 是AD边的中点,F 是x轴上一动点,连接EF,过点E作EG⊥EF,交BC所在的直线与点G,连接FG.
(1)当点F与点A重合时,易得
EF
EG
=
1
2
;若点F与点A不重合时,试问
EF
EG
的值是否改变?直接写出正确判断;
(2)设点F的横坐标为x(-2<x<2),△FBG的面积为S,求S关于x的函数关系式,并求出S的最大值;
(3)当点F在 x轴上运动时,判断有几个位置能够使得以点G为顶点三角形和以点B、F、G为顶点的三角形全等?直接写出相应的点F的坐标.
(2011·张家口一模)如图,等腰△ABC中,AB=AC,∠B=30°,BC=
12
3
,点D是BC中点,点E从点D出发沿DB经每秒1个单位长的速度向点B匀速运动,点F从点D出发以每秒1个单位长的速度向点C匀速运动.在点E、F的运动过程中,以EF为边作正方形EFPQ,使它与等腰△ABC的线段BC的同侧,点E、F同进出发,当PQ经过点A时,点E再以每秒1个单位长的速度向点C匀速运动.回到点D时停止运动,点F也随之停止.设点E、F运动的时间是t秒(t>0)
(1)设EF的长为y,在点E从点D向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围)
(2)t为何值时,PQ经过点A?
(3)当BE=5
3
时,求△ABC与正方形EFPQ重叠部分的面积?
(4)随着时间t的变化,△ABC与正方形EFPQ重叠部分的周长在某个时刻会达到最
大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
(2011·运河区二模)已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),过点C作
⊙O的切线CD,过A作CD的垂线,垂足是M点.
(1)如图1,若CD∥AB,求证:AM是⊙O的切线.
(2)如图2,若AB=6,AM=4,求AC的长.
(2011·裕华区一模)(1)如图1,已知△ABC中,∠C=90°,AC=BC,点C在直线l上,过点A作AE⊥l于E,BF⊥l于F,则线段CE与BF的数量关系是
CE=BF
CE=BF
;
(2)如图2,分别以AB、AC为一边向△ABC外作正方形ABGE和ACHF,直线AN⊥BC于N,若EP⊥AN于P,FQ⊥AN于Q,判断线段EP、FQ之间的数量关系,并说明;
(3)如图3,分别以AB、AC为一边向△ABC外作矩形ABGE和ACHF,线AN⊥BC于N,若EP⊥AN于P,FQ⊥AN于Q,如果GB=kAB,HC=kAC,(2)中结论还成立吗?请说明理由.
(2011·杨浦区二模)已知半径为6的⊙O
1
与半径为4的⊙O
2
相交于点P、Q,且∠O
1
PO
2
=120°,点A为⊙O
1
上异于点P、Q的动点,直线AP与⊙O
2
交于点B,直线O
1
A与直线O
2
B交于点M.
(1)如图1,求∠AMB的度数;
(2)当点A在⊙O
1
上运动时,是否存在∠AMB的度数不同于(1)中结论的情况?若存在,请在图2中画出一种该情况的示意图,并求出∠AMB的度数;若不存在,请在图2中再画出一个符合题意的图形,并证明∠AMB的度数同于(1)中结论;
(3)当点A在⊙O
1
上运动时,若△APO
1
与△BPO
2
相似,求线段AB的长.
(2011·盐田区模拟)如图,∠A的顶点为A(0,3),两边分别经过点B(4,0)、C(0,-2).AD平分∠
A并与x轴相交于点D,连接CD.
(1)求证:BD=CD;
(2)求tan∠ACD的值.
(2012·宁波一模)如图1,P是锐角△ABC所在平面上一点.如果∠APB=∠BPC=∠CPA=120°,则点P就叫做△ABC费马点.
(1)当△ABC是边长为4的等边三角形时,费马点P到BC边的距离为
2
3
3
2
3
3
.
(2)若点P是△ABC的费马点,∠ABC=60°,PA=2,PC=3,则PB的值为
6
6
.
(3)如图2,在锐角△ABC外侧作等边△ACB′,连接BB′.求证:BB′过△ABC的费马点P.
(2012·南浔区一模)黄金分割比是生活中比较多见的一种长度比值,它能给人许多美感和科学性,我们初中阶段学过的许多几何图形也有着类似的边长比例关系.例如我们熟悉的顶角是36°的等腰三角形,其底与腰之比就为黄金分割比
5
-1
2
,底角平分线与腰的交点为黄金分割点.
(1)如图1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分线CD交腰AB于点D,请你证明点D是腰AB的黄金分割点;
(2)如图2,在△ABC中,AB=AC,若
AB
BC
=
5
-1
2
,则请你求出∠A的度数;
(3)如图3,如果在Rt△ABC中,∠ACB=90°,CD为AB上的高,∠A、∠B、∠ACB的对边分别为a,b,c.若点D是AB的黄金分割点,那么该直角三角形的三边a,b,c之间是什么数量关系?并证明你的结论.
第一页
上一页
248
249
250
251
252
下一页
最后一页
173220
173221
173222
173223
173224
173225
173226
173227
173228
173229