题目:
(2012·宁波一模)如图1,P是锐角△ABC所在平面上一点.如果∠APB=∠BPC=∠CPA=120°,则点P就叫做△ABC费马点.
(1)当△ABC是边长为4的等边三角形时,费马点P到BC边的距离为
.
(2)若点P是△ABC的费马点,∠ABC=60°,PA=2,PC=3,则PB的值为
.
(3)如图2,在锐角△ABC外侧作等边△ACB′,连接BB′.求证:BB′过△ABC的费马点P.
答案
(1)解:延长AP,交BC于D,

∵AB=AC=BC,∠APB=∠BPC=∠CPA=120°,
∴P为三角形的内心,
∴AD⊥BC,BD=CD=2,∠PBD=30°,
∴BP=
=
,
∴AP=BP=
,
∵AD=
=2
,
∴PD=AD-AP=2
-
=
,
故答案为:
.
(2)解:(1)∵∠PAB+∠PBA=180°-∠APB=60°,
∠PBC+∠PBA=∠ABC=60°,
∴∠PAB=∠PBC,
又∵∠APB=∠BPC=120°,
∴△ABP∽△BCP,
∴
=
,
∴PB
2=PA·PC,即PB=
=
,
故答案为:
.
(3)证明:在BB′上取点P,使∠BPC=120°
连接AP,再在PB′上截取PE=PC,连接CE.
∵∠BPC=120°,
∴∠EPC=60°,
∴△PCE为正三角形.
∴PC=CE,∠PCE=60°,∠CEB’=120°
∵△ACB′为正三角形,
∴AC=B′C,∠ACB′=60°
∴∠PCA+∠ACE=∠ACE+∠ECB′=60°,∠PCA=∠ECB′,
∴△ACP≌△B′CE,
∴∠APC=∠B′CE=120°,PA=EB′,
∴∠APB=∠APC=∠BPC=120°,
∴P为△ABC的费马点.
∴BB′过△ABC的费马点P.