数学
(2010·东城区一模)如图,正方形ABCD的对角线AC与BD相交于点M,正方形MNPQ与正方形ABCD全等,射线MN与MQ不过A、B、C、D四点且分别交ABCD的边于E、F两点,
(1)求证:ME=MF;
(2)若将原题中的正方形改为矩形,且BC=2AB=4,其他条件不变,探索线段ME与线段MF的数量关系.
(2010·大兴区二模)如图,⊙O是△ABC的外接圆,AO⊥BC交BC于点D,过A点作AP∥BC,交BO的延长线于点P.
(1)求证:AP是⊙O的切线;
(2)若⊙O的半径R为5,BC=8,求线段AP的长.
(2010·大连一模)如图1,在△OAB和△OCD中,∠A<90°,OB=kOD(k>1),∠AOB=∠COD,∠OAB与∠OCD互补.试探索线段AB与CD的数量关系,并证明你的结论.
说明:如果你反复探索没有解决问题,可以选取(1)(2)中的一个条件,(1)k=1(如图2);(2)C在OA上,点D与点B重合(如图3).
(2010·崇明县二模)已知:如图,AC=BC,∠ACB=90°,点B的坐标为(1,0),抛物线过A、B、C三点.
(1)求抛物线的解析式;
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方y轴左侧的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出点M的坐标;若不存在,请说明理由.
(2010·常熟市模拟)如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(12,0),点B的坐标为(6,8),点C在y轴的正半轴上.动点Q在OA上运动,从O点出发到A点,速度是每秒2个单位长度;动点P在AB上运动,从A点出发到B点,速度是每秒1个单位长度,两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动
时间为t(秒).
(1)当点P运动至AB的中点时,求点P坐标;
(2)当t为何值时,QP⊥CQ?
(3)当t为何值时,△CPQ的面积有最大(小)值?并求出最大(小)值.
(2010·常熟市模拟)如图所示,已知△ABC内接于⊙O,AD平分∠BAC交BC于点P、交⊙O于点D,连接DB、DC,在AD上取一点
I,使DI=DB.
(1)求证:DI
2
=DP·AD;
(2)求证:∠ABI=∠CBI;
(3)若⊙O的半径为
3
,∠BAC=120°,求△BDC的面积?
(2010·禅城区模拟)如图,在正方形ABCD中,CE⊥DF于O点,假设正方形的边长1,CF=x.
(1)试求四边形ADOE的面积;
(2)当F是BC的中点时,求四边形ADOE的面积的值.
(2010·宝山区一模)在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.
(1)连接AQ,当△ABQ是直角三角形时,求点Q的坐标;
(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;
(3)过点A作AC⊥AB,AC交射线PQ于点C,连接BC,D是BC的中点.在点P、Q的运动过程中,是否存在某时刻,使得以A、C、Q、D为顶点的四边形是平行四边形?若存在,试求出这时cot∠ABC的值;若不存在,试说明理由.
(2010·宝山区一模)如图,△ABC中,点D在边BC上,DE∥AB,DE交BC于点E,点BC在边AB上,且
AF
FB
=
CE
AE
.
(1)求证:DF∥AC;
(2)如果BD:DC=1:2,△ABC的面积为18cm
2
,求四边形AEDF的面积.
(2010·白云区一模)如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D为BC边上的动点(D不与B、C重合),∠AD
E=45°,DE交AC于点E.
(1)∠BAD与∠CDE的大小关系为
相等
相等
.请证明你的结论;
(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;
(3)当△ADE是等腰三角形时,求AE的长;
(4)是否存在x,使△DCE的面积是△ABD面积的2倍?若存在,求出x的值,若不存在,请说明理由.
第一页
上一页
232
233
234
235
236
下一页
最后一页
173054
173055
173056
173057
173060
173061
173062
173063
173064
173065