试题

题目:
(2010·常熟市模拟)如图所示,已知△ABC内接于⊙O,AD平分∠BAC交BC于点P、交⊙O于点D,连接DB、DC,在AD上取一点青果学院I,使DI=DB.
(1)求证:DI2=DP·AD;    
(2)求证:∠ABI=∠CBI;
(3)若⊙O的半径为
3
,∠BAC=120°,求△BDC的面积?
答案
证明:(1)∵AD平分∠BAC,
∴∠BAD=∠CAD,
∵∠CBD=∠CAD,
∴∠BAD=∠CBD,
∵∠BDA=∠BDP,
∴△BDA∽△PDB,
∴BD2=AD·DP,
∵DI=DB,
∴DI2=DP·AD;

(2)∵DI=DB,
∴∠IBD=∠BID
∵∠CBI=∠IBD-∠CBD,∠ABI=∠BID-∠BAD,
∴∠ABI=∠CBI;

(3)∵∠BAC=120°,
∴∠BAD=∠CAD=60°,
∴∠CBD=∠BCD=60°,
∴△BCD为等边三角形,
∵⊙O的半径为
3

∴BC=3,
∴S△BDC=
9
3
4

证明:(1)∵AD平分∠BAC,
∴∠BAD=∠CAD,
∵∠CBD=∠CAD,
∴∠BAD=∠CBD,
∵∠BDA=∠BDP,
∴△BDA∽△PDB,
∴BD2=AD·DP,
∵DI=DB,
∴DI2=DP·AD;

(2)∵DI=DB,
∴∠IBD=∠BID
∵∠CBI=∠IBD-∠CBD,∠ABI=∠BID-∠BAD,
∴∠ABI=∠CBI;

(3)∵∠BAC=120°,
∴∠BAD=∠CAD=60°,
∴∠CBD=∠BCD=60°,
∴△BCD为等边三角形,
∵⊙O的半径为
3

∴BC=3,
∴S△BDC=
9
3
4
考点梳理
相似三角形的判定与性质;等边三角形的判定与性质;圆周角定理.
(1)根据题意可推出∠BAD=∠CBD,即可推出△BDA∽△PDB,所以BD2=AD·DP,即DI2=DP·AD;
(2)根据题意和外角的性质,即可推出∠IBD=∠BID,∠CBI=∠IBD-∠CBD,∠ABI=∠BID-∠BAD,即∠ABI=∠CBI;
(3)根据题意可推出△BCD为等边三角形,由⊙O的半径即可推出BC的长度和△BCD的面积.
本题主要考查相似三角形的判定和性质、等边三角形的判定和性质、圆周角定理,关键在于熟练地运用个定理性质,求△BDA∽△PDB,△BCD为等边三角形.
找相似题