数学
如图,A、C、F、B在同一直线上,AC=BF,AE=BD,且AE∥BD.求证:EF∥CD.
如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:
(1)△ABC≌△DCB;
(2)点M在BC的垂直平分线上.
如图,在锐角△ABC中,∠ACB=45°,AB=1.分别以A、B为直角顶点,向△ABC外作等腰直角三角形ACE和等腰直角三角形BCF,再分别过点E、F作边AB所在直线的垂线,垂足为M,N.
(1)求证:EM+FN=AB;
(2)求△ABC面积的最大值;
(3)当△ABC面积最大时,在直线MN上找一点P,使得EP+FP的值最小,求出这个最小值.(结果可保留根号)
如图,给出四个等式:①AE=AD;②AB=AC;③OB=OC;④∠B=∠C. 现选取其中的三个,以两个作
为已知条件,另一个作为结论组成命题.
(1)请你写出两个真命题(用序号填空).
真命题1:已知
①②
①②
求证:
④
④
.
真命题2:已知
②④
②④
求证:
①
①
.
(2)请你选择其中的一个真命题加以证明;
我选择真命题
1或2
1或2
.
证明:
(1)如图,AB=AC,AE⊥BC于点D,求证:BE=CE.
(2)某蔬菜公司收购到某种蔬菜104吨,准备加工后上市销售.该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨.现计划用16天正好完成加工任务,则该公司应安排几天精加工,几天粗加工?
如图,AB∥DE,B、E、C、F在同一条直线上,且BE=CF,AB=DE,求证:AC=DF.
如图,在△ABC中,AB=AC,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.
求证:BD=CE.
如图,点C是l上任意一点,CA⊥CB且AC=BC,过点A作AM⊥l于点M,过点B作BN⊥l于N,则线段MN与AM、BN有什么数量关系,证明你的结论:
如图,AD⊥BC于D,BE⊥AC于E,AD、BE交于F,AD=BD.
求证:BF=AC.
(1)如图1,等腰直角△ABC的直角顶点B在直线l上,A、C在直线l的同侧.过A、C作直线l的垂线段AD、CE,垂足为D、E.请证明AD+CE=DE.
(2)如图2,平面直角坐标系内的线段GH的两个端点的坐标为G(3,3),H(0,1).将线段GH绕点H顺时针旋转90°得到线段KH.求点K的坐标.
(3)平面直角坐标系内有两点P(a,b)、M(-2,1),将点P绕点M逆时针旋转90°得到点Q,请你直接写出点Q的坐标.
第一页
上一页
13
14
15
16
17
下一页
最后一页
947694
947695
947696
947697
947698
947699
947700
947701
947702
947703