试题
题目:
如图,点C是l上任意一点,CA⊥CB且AC=BC,过点A作AM⊥l于点M,过点B作BN⊥l于N,则线段MN与AM、BN有什么数量关系,证明你的结论:
答案
答:MN=AM+BN.
证明:∵CA⊥CB,
∴∠ACM+∠BCN=90°,
又∵BN⊥l于N,AM⊥l于点M,
∴∠AMC=∠BNC=90°,
∴∠CBN+∠BCN=90°,
∴∠ACM=∠CBN,
在△AMC和△CNB中,
∵
∠AMC=∠BNC
∠ACM=∠CBN
AC=BC
∴△AMC≌△CNB(AAS),
∴AM=CN,BN=CM,
∴MN=AM+BN.
答:MN=AM+BN.
证明:∵CA⊥CB,
∴∠ACM+∠BCN=90°,
又∵BN⊥l于N,AM⊥l于点M,
∴∠AMC=∠BNC=90°,
∴∠CBN+∠BCN=90°,
∴∠ACM=∠CBN,
在△AMC和△CNB中,
∵
∠AMC=∠BNC
∠ACM=∠CBN
AC=BC
∴△AMC≌△CNB(AAS),
∴AM=CN,BN=CM,
∴MN=AM+BN.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
由AM⊥l于点M,B作BN⊥l于N,可得∠AMC=∠BNC=90°,又由CA⊥CB,根据同角的余角相等,可得∠ACM=∠CBN,然后由AC=BC,利用AAS,即可判定△AMC≌△CNB,继而证得MN=AM+BN.
此题考查了全等三角形的判定与性质以及直角三角形的性质.此题难度不大,注意利用AAS的判定方法,证得△AMC≌△CNB是解此题的关键.
探究型.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.