数学
如图,已知∠1=∠2,∠3=∠4,AD=EC.
求证:△ABE是等腰三角形.
如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点O.求证:∠A=∠D.
如图,AB=AC,点E、F分别在AB、AC上,BF与CE交于点D,AE=AF.
求证:∠B=∠C.
已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,E,F分别是垂足,求证:AE=AF.
(1)如图①,已知C是线段AB上一点,分别以AC、BC为边长在AB的同侧作等边△ADC与等边△CBE,试猜想AE与DB的大小关系,并证明.
(2)如图②,当等边△CBE绕点C旋转后,上述结论是否仍成立?若成立,请证明;若不成立,请说明理由.
如图,直线AB交x轴正半轴于点A(a,0),交y轴正半轴于点B(0,b),且a、b满足
a-4
+|4-b|=0,
(1)求A、B两点的坐标;
(2)D为OA的中点,连接BD,过点O作OE⊥BD于F,交AB于E,求证∠BDO=∠EDA;
(3)如图,P为x轴上A点右侧任意一点,以BP为边作等腰Rt△PBM,其中PB=PM,直线MA交y轴于点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变,求其值;若变化,求线段OQ的取值范围.
已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.
(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.
求证:①△BDF≌△ADC;
②FG+DC=AD;
(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.
如图△ABC≌△A′B′C′,AD是△ABC的一条角平分线A′D′是△A′B′C′的一条角平分线.
求证:AD=A′D′.
如图,△ABE和△ACD有公共点A,∠BAC=∠DAE=90°,AB=AC,AE=AD,延长BE分别交AC、CD于点M、F.求证:
(1)△ABE≌△ACD;
(2)BF⊥CD.
如图DE⊥AB,DF⊥AC,垂足分别为E、F,请你从(1)AB=AC;(2)BD=CD;(3)DE=DF中选出两个作为已知条件,另一个作为结论,编写一个几何证明题并完成证明过程.
已知:DE⊥AB,DF⊥AC,垂足分别为E、F,且
AB=AC
AB=AC
,
BD=DC
BD=DC
求证:
DE=DF
DE=DF
证明:
略
略
.
第一页
上一页
121
122
123
124
125
下一页
最后一页
1257627
1257628
1257630
1257632
1257635
1257637
1257639
1257642
1257644
1257646