题目:
(1)如图①,已知C是线段AB上一点,分别以AC、BC为边长在AB的同侧作等边△ADC与等边△CBE,试猜想AE与DB的大小关系,并证明.
(2)如图②,当等边△CBE绕点C旋转后,上述结论是否仍成立?若成立,请证明;若不成立,请说明理由.
答案

解:(1)如图1,AE=DB.
理由如下:
∵△ADC与△CBE都是正三角形,
∴AC=DC,CE=CB,∠ACD=60°,∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.
在△ACE与△DCB中,
,
∴△ACE≌△DCB(SAS),
∴AE=DB.
(2)成立.理由如下:
如图2,∵△ADC与△CBE都是正三角形,
∴AC=DC,CE=CB,∠ACD=60°,∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.
在△ACE与△DCB中,
,
∴△ACE≌△DCB(SAS),
∴AE=DB.

解:(1)如图1,AE=DB.
理由如下:
∵△ADC与△CBE都是正三角形,
∴AC=DC,CE=CB,∠ACD=60°,∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.
在△ACE与△DCB中,
,
∴△ACE≌△DCB(SAS),
∴AE=DB.
(2)成立.理由如下:
如图2,∵△ADC与△CBE都是正三角形,
∴AC=DC,CE=CB,∠ACD=60°,∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.
在△ACE与△DCB中,
,
∴△ACE≌△DCB(SAS),
∴AE=DB.