数学
(2007·溧水县一模)有一个测量弹跳力的体育器材,如图所示,竖杆AC、BD的长度分别为200cm、300cm,CD=300cm.现有一人站在斜杆AB下方的点E处,直立、单手上举时中指指尖到地面的高
度为EF,屈膝尽力跳起时,中指指尖刚好触到斜杆AB上的点G处,此时,就将EG与EF的差值y (cm)作为此人此次的弹跳成绩.
(1)设CE=x(cm),EF=a(cm),求出用x和a表示y的式子;
(2)若规定y≥50时,弹跳成绩为优;40≤y<50时,弹跳成绩为良;30≤y<40时,弹跳成绩为及格.现有一男生,站在某一位置尽力跳起时,刚好触到斜杆.已知该同学a=205cm,且该生弹跳成绩为良.求他弹跳时站的位置x的范围.
(2006·深圳模拟)阅读下面的短文,并回答下列问题
我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.
如图,甲、乙是两个不同的立方体,立方体都是相似体,它们的一切对应线段之比都等于相
似比(a:b).
设S
甲
、S
乙
分别表示这两个立方体的表面积,则
S
甲
S
乙
=
6
a
2
6
b
2
=(
a
b
)
2
,又设V
甲
、V
乙
分别表示这两个立方体的体积,则
V
甲
V
乙
=
a
3
b
3
=(
a
b
)
3
.
(1)下列几何体中,一定属于相似体的是
A
A
A、两个球体B、两个圆锥体C、两个圆柱体D、两个长方体.
(2)请归纳出相似体的三条主要性质:
①相似体的一切对应线段(或弧)长度的比等于
相似比
相似比
;
②相似体表面积的比等于
相似比平方
相似比平方
;
③相似体体积的比等于
相似比立方
相似比立方
.
(3)寒假里,康子帮母亲到市场去买鱼,鱼摊上有一种鱼,个个都长得非
常相似,现有大小两种不同的价钱,如下图所示,鱼长10厘米的每条10元,鱼长13厘米的每条15元.康子不知道买哪种更好些,你能否帮他出出主意.
如图,为了测量一栋大楼的高度,李青同学在她的脚下放了一面镜子,然后向后退,直到她刚好在镜子中看到大楼顶部.如果李青身高1.55m,她估计自己眼睛离地面1.50m,同时量得LM=0.30m,MS=25m,问这栋大楼有多高?
某校八年一班的一节数学活动课安排了测量操场上悬挂国旗的旗杆的高度.甲、乙、丙三个学习小组设计的测量方案如图所示:甲组测得图中BO=60米,OD=3.4米,CD=1.7米;乙组测得图中,CD=1.5米,同一时刻影长FD=0.9米,EB=18米;丙组测得图中,EF∥AB、FH∥BD,BD=90米,EF=0.2米,人的臂长(FH)为0.6米.请你任选一种方案,利用实验数据求出该校旗杆的高度.
某校九年级同学在一次数学实践活动中,去测量学校的树高,小明这一组的测量方法如下:如图,在B处竖一标杆AB,已知标杆AB=2.5m,小明站在点F处,眼睛E目测标杆顶部A与树顶C正好在同一视线上,(点F,B,D也在同一直线上).这一组其他同学量得标杆到树的水平距离BD=3.6m,小明到标杆的水平距离FB=2m,小明的目高(眼睛到脚底的距离)EF=1.5m.根据这些数据,小明这一组同学很快就求出了树CD的高度.你会吗?请写出解答过程.
如图,灯泡在圆桌的正上方,当距桌面2m时,圆桌的影子的直径为2.8m,在仅仅改变圆桌的高度,其他条件不变的情况下,圆桌的桌面再上升多少米,其影子的直径变为3.2m?
如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆A、B,恰好被南岸的两棵树C、D遮住,并且在这两棵树之间还有三棵树,求河的宽度.
一位同学想利用树影测树高AB.在某一时刻测得1m的竹竿的影长为0.7m,但当他马上测树影时,发现影子不全落在地上,一部分落在了附近的一幢高楼上(如图).于是他只得测出了留在墙上的影长CD为1.5m,以及地面部分上的影长BD为4.9m.请你帮他算一下树高到底有多高.
如图,路边有一灯杆AB,在A点灯光的照耀下,点D处一直立标杆CD的影子为DH,沿BD方向的F处有另一标杆EF,其影子为FG,
(1)在图中画出灯杆AB,并标上相应的字母;(不写画法,保留画图痕迹)
(2)已知标杆EF=1.6m,影长FG=4m,灯杆AB到标杆EF的距离BF=8m,求灯杆AB的长.
如图1,A、B两点被池塘隔开,为测量AB两点的距离,在AB外选一点C,连接AC和BC,并分别找出AC和BC的中点M、N,则MN是△ABC的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,如果测得MN=20m,那么AB=2×20m=40m.
(1)小红说:测AB距离也可以由图2所示用三角形全等知识来解决,请根据题意填空:延长AC到D,使CD=
AC
AC
,延长BC到E,使CE=
BC
BC
,由全等三角形得,AB=ED;
(2)小华说:测AB距离也可以由三角形相似的知识来设计测量方法,求出AB的长;请根据题意在如图3中画出相应的测量图形:延长AC到H,使CH=2AC,延长BC到Q,使CQ=2BC,连接QH;若测得QH的长是400米,你能测出AB的长吗?若能,请测出;若不能,请说明理由.
第一页
上一页
292
293
294
295
296
下一页
最后一页
1291621
1291627
1291629
1291634
1291638
1291641
1291645
1291648
1291649
1291655