数学
(2012·莲都区模拟)将抛物线y=-2x
2
-1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( )
(2012·淮北模拟)已知二次函数y=x
2
-bx+1(-1≤b≤1),当b从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是( )
(2012·大港区一模)把抛物线y=ax
2
+bx+c的图象先向右平移4个单位,再向下平移2个单位,所得的图象的解析式是y=x
2
-3x+5,则a+b+c的值为( )
(2012·鞍山三模)已知抛物线y=ax
2
+bx+c(a≠0)与抛物线y=x
2
-4x+3关于y轴对称,则函数y=ax
2
+bx+c的解析式为( )
(2011·徐汇区一模)在直角坐标平面内,如果抛物线y=-(x-1)
2
经过平移可以与抛物线y=-x
2
互相重合,那么这个平移是( )
(2011·秀洲区一模)抛物线y=(x+2)
2
-1可以由抛物线y=x
2
平移得到,下列平移方法中正确的是( )
(2011·南岗区二模)把抛物线,y=2x
2
+3向右平移2个单位,然后向下平移l个单位,则平移后得到的抛物线解析式是( )
(2011·樊城区模拟)将抛物线y=-x
2
+2x-2向右平移1个单位,再向下平移1个单位,得到抛物线y=-x
2
+bx+c,则b.c的值分别为( )
(2011·宝山区一模)关于二次函数y=a(x+1)
2
的图象,下列说法中,正确的是( )
(2011·鞍山二模)在直角坐标平面内,如果抛物线y=2x
2
-3经过平移后与抛物线y=2x
2
重合,那么平移的要求是( )
第一页
上一页
209
210
211
212
213
下一页
最后一页
1198923
1198931
1198947
1198950
1198954
1198958
1198964
1198969
1198974
1198978