数学
如图,在△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连接AN,CM相交于点P,试求∠APM的度数.
如图,在等腰直角△ABC中,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交BE延长线于G,求证:BG=AF+FG.
如图,在等腰Rt△ABC中,∠ABC=90°,D为AC边上的中点,过点D作DE丄DF,交AB于点E,交BC于点F,若AE=4,FC=3,求△BEF的面积.
如图,E是BC上的一点,∠B=∠C=90°,且Rt△ABE≌Rt△ECD.
(1)求证:△AED是等腰直角三角形;
(2)若△AED的面积是
25
2
,△ABE的面积是6,求△ABE的周长.
如图,△ABC中,∠ACB=90°,CA=CB,点D为△ABC形外一点,且点D在AC的垂直平分线上,若∠BCD=30°,求∠ABD的值.
已知,△ABC中,∠BAC=45°,以AB边为边以点B为直角顶点在△ABC外部作等腰直角三角形ABD,以AC边为斜边在△ABC外部作等腰直角三角形ACE,连接BE、DC,两条线段相交于F,试求∠EFC的度数.
如图,已知在等腰Rt△BCD中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,延长BF交AC于E,H是BC边的中点,连接DH与BE相交于点G
(1)试说明:△FBD≌△ACD;
(2)试说明:△ABC是等腰三角形;
(3)试说明:CE=
1
2
BF;
(4)求BG:GE的值(直接写出答案).
如图:AB⊥BC,DC⊥BC,E在BC上,AB=EC,BE=CD,EF⊥AD于F,
(1)试说明F是AD中点;(2)求∠AEF的度数.
如图,等腰直角△ACB中,AC=BC,∠ACB=90°,过点C作直线a,AM⊥a于点M,BN⊥a于N.
求证:
(1)BN=CM;
(2)请说明AM、MN、BN的大小关系.
如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点,如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请你判断△OMN的形状,并证明你的结论.
第一页
上一页
116
117
118
119
120
下一页
最后一页
1063675
1063678
1063680
1063682
1063685
1063687
1063690
1063691
1063694
1063696