试题
题目:
如图:AB⊥BC,DC⊥BC,E在BC上,AB=EC,BE=CD,EF⊥AD于F,
(1)试说明F是AD中点;(2)求∠AEF的度数.
答案
解:(1)由题意,AB⊥BC,DC⊥BC,AB=EC,BE=CD;
所以△ABE≌△ECD,
即AE=ED,
又EF⊥AD,
即可得证F是AD是中点.
(2)由(1)得,∠AEB+∠CED=90°;
所以∠AED=90°,
所以△AED为等腰直角三角形,
所以∠AEF=45°.
解:(1)由题意,AB⊥BC,DC⊥BC,AB=EC,BE=CD;
所以△ABE≌△ECD,
即AE=ED,
又EF⊥AD,
即可得证F是AD是中点.
(2)由(1)得,∠AEB+∠CED=90°;
所以∠AED=90°,
所以△AED为等腰直角三角形,
所以∠AEF=45°.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰直角三角形.
(1)由题意,AB⊥BC,DC⊥BC,AB=EC,BE=CD,可证△ABE≌△ECD,可证AE=ED,且EF⊥AD,即可得证F是AD是中点.
(2)由(1)可推出,△AED为等腰直角三角形,所以∠AEF=45°.
此题考查了等腰三角形的判定定理;等腰三角形底边的中线,高线和顶角角平分线重合以及等腰直角三角形的性质.
证明题.
找相似题
(2013·重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )