试题
题目:
如图,在等腰Rt△ABC中,∠ABC=90°,D为AC边上的中点,过点D作DE丄DF,交AB于点E,交BC于点F,若AE=4,FC=3,求△BEF的面积.
答案
解:连接BD,
∵等腰直角三角形ABC中,D为AC边上中点,
∴BD⊥AC(三线合一),BD=CD=AD,∠ABD=45°,
∴∠C=45°,
∴∠ABD=∠C,
又∵DE丄DF,
∴∠FDC+∠BDF=∠EDB+∠BDF,
∴∠FDC=∠EDB,
在△EDB与△FDC中,
∵
∠EBD=∠C
BD=CD
∠EDB=∠FDC
,
∴△EDB≌△FDC(ASA),
∴BE=FC=3,
同理AE=BF=4,
∴△BEF的面积是
1
2
BE×BF=
1
2
×3×4=6.
解:连接BD,
∵等腰直角三角形ABC中,D为AC边上中点,
∴BD⊥AC(三线合一),BD=CD=AD,∠ABD=45°,
∴∠C=45°,
∴∠ABD=∠C,
又∵DE丄DF,
∴∠FDC+∠BDF=∠EDB+∠BDF,
∴∠FDC=∠EDB,
在△EDB与△FDC中,
∵
∠EBD=∠C
BD=CD
∠EDB=∠FDC
,
∴△EDB≌△FDC(ASA),
∴BE=FC=3,
同理AE=BF=4,
∴△BEF的面积是
1
2
BE×BF=
1
2
×3×4=6.
考点梳理
考点
分析
点评
全等三角形的判定与性质;等腰直角三角形.
首先连接BD,由已知等腰直角三角形ABC,可推出BD⊥AC且BD=CD=AD,∠ABD=45°再由DE丄DF,可推出∠FDC=∠EDB,又等腰直角三角形ABC可得∠C=45°,所以△EDB≌△FDC,从而得出BE=FC=3,同理求出AE=BF=4,根据面积公式求出即可.
此题考查的知识点是勾股定理及全等三角形的判定的应用,关键是由已知先证三角形全等,求得BE和BF,再根据三角形面积公式求出即可.
找相似题
(2013·重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )