试题
题目:
已知,△ABC中,∠BAC=45°,以AB边为边以点B为直角顶点在△ABC外部作等腰直角三角形ABD,以AC边为斜边在△ABC外部作等腰直角三角形ACE,连接BE、DC,两条线段相交于F,试求∠EFC的度数.
答案
解:作DH∥BE交EA延长线于H,连接CH,
∵△ABD和△AEC是等腰直角三角形,∠BAC=45°,
∴∠BDA+∠DAE=180°,
∴四边形BEHD为平行四边形,
在△CEH和△EAB中,
CE=AE
∠CEH=∠EAB
HE=AB
,
∴△CEH≌△EAB,
∴CH=BE=DH,∠CHE=∠ABE,
∵∠ABE+∠AEB=∠BAE=90°,
∴∠CHE+∠BEH=90°,
∴∠CHD=90°,
∴∠EFC=∠CDH=45°.
解:作DH∥BE交EA延长线于H,连接CH,
∵△ABD和△AEC是等腰直角三角形,∠BAC=45°,
∴∠BDA+∠DAE=180°,
∴四边形BEHD为平行四边形,
在△CEH和△EAB中,
CE=AE
∠CEH=∠EAB
HE=AB
,
∴△CEH≌△EAB,
∴CH=BE=DH,∠CHE=∠ABE,
∵∠ABE+∠AEB=∠BAE=90°,
∴∠CHE+∠BEH=90°,
∴∠CHD=90°,
∴∠EFC=∠CDH=45°.
考点梳理
考点
分析
点评
专题
等腰直角三角形;全等三角形的判定与性质.
作DH∥BE交EA延长线于H,连接CH,易证四边形BEHD为平行四边形,然后证明△CEH≌△EAB,根据平行线的性质,可得出∠CHD是直角,即可求出∠EFC的度数.
本题主要考查了等腰直角三角形的性质和全等三角形的判定与性质,通过证明三角形全等,是证明角或边相等的重要方法.
计算题.
找相似题
(2013·重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
(2012·乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2
.
其中正确结论的个数是( )
(2011·黑龙江)在△ABC中,BC:AC:AB=1:1:
2
,则△ABC是( )