试题

题目:
青果学院如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点,如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请你判断△OMN的形状,并证明你的结论.
答案
证明:△OMN为等腰直角三角形.理由如下:
连接OA青果学院,如图,
∵AC=AB,∠BAC=90°,
∴OA=OB,OA平分∠BAC,∠B=45°,
∴∠NAO=45°,
∴∠NAO=∠B,
在△NAO和△MBO 中,
AN=BM
∠NAO=∠B
AO=BO

∴△NAO≌△MBO,
∴ON=OM,∠AON=∠BOM,
∵AC=AB,O是BC的中点,
∴AO⊥BC,
即∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,
即∠NOM=90°,
∴△OMN是等腰直角三角形.
证明:△OMN为等腰直角三角形.理由如下:
连接OA青果学院,如图,
∵AC=AB,∠BAC=90°,
∴OA=OB,OA平分∠BAC,∠B=45°,
∴∠NAO=45°,
∴∠NAO=∠B,
在△NAO和△MBO 中,
AN=BM
∠NAO=∠B
AO=BO

∴△NAO≌△MBO,
∴ON=OM,∠AON=∠BOM,
∵AC=AB,O是BC的中点,
∴AO⊥BC,
即∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,
即∠NOM=90°,
∴△OMN是等腰直角三角形.
考点梳理
全等三角形的判定与性质;等腰直角三角形.
连OA,由AC=AB,∠BAC=90°,根据等腰直角三角形的性质得OA=OB,OA平分∠BAC,∠B=45°,并且AO⊥BC,则∠NAO=∠B=45°,根据全等三角形的判定得到△NAO≌△MBO,则 ON=OM,∠AON=∠BOM,又∠BOM+∠AOM=90°,得到∠AON+∠AOM=90°,于是可判断△OMN是等腰直角三角形.
本题考查了全等三角形的判定与性质:有两组边对应相等,并且它们的夹角也相等的两三角形全等;全等三角形的对应边相等、对应角相等.也考查了等腰直角三角形的性质与判定.
探究型.
找相似题