数学
(2010·厦门)如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B
的俯角α=20°(B、C在同一水平线上),求目标C到控制点B的距离(精确到1米).
(参考数据sin20°=0.34,cos20°=0.94,tan20°=0.36)
(2010·梧州)如图,某飞机于空中探测某座山的高度.此时飞机的飞行高度是AF=3.7千米,从飞机上观测山顶目标C的俯视角为30°.飞机继续
相同的高度飞行3千米到B处,此时观测目标C的俯角是60°,求此山的高度CD.(精确到0.1)
(参考数据:
2
≈1.414
,
3
≈1.732
)
(2010·十堰)某乡镇中学数学活动小组,为测量数学楼后面的山高AB,用了如下方法.如图所示,在教学楼底C处测得山顶A的仰角为60°,在教学楼顶D处,测得山顶A的俯角为45°.已知教学楼高CD=12米,求山高AB.(参考数据
3
=1.73
2
=1.41,
精确到0.1米,化简后再代入参数数据运算)
(2010·盘锦)小岳和小威星期天到广场比赛放风筝,如图某一时刻小岳与小威分别位于相距15米得两点(此时两人的风筝线AB、CD是拉直的,且与两人处于同一平面内,风筝线底端与地面距离相等),小岳观测自己风筝的仰角是42°,观测小威风筝的仰角是39°,小威观测自己风筝的仰角是59°,观测小岳风筝的仰角是67°,请用学过的数学知识判断谁的风筝飞的较高?(结果保留一位小数)
(参考数据sin39°≈0.63,tan39°≈0.81,sin45°≈0.67,tan42°≈0.90,sin59°≈0.86,
tan59°≈1.7,sin67°≈0.92,tan67°≈2.4)
(2010·南京)如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.
(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
(2010·眉山)如图,在一次数学课外实践活动中,要求测教学楼的高度AB、小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达E,又测得教学楼顶端A的仰角为60°.求这幢教学楼的高度AB.
(2010·鄂州)如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(精确到米,参
考数据:
2
≈1.414,
3
≈1.732,
5
≈2.236)
(2010·长沙)为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.
(2010·长春)如图,望远镜调节好后,摆放在水瓶地面上.观测者用望远镜观测物体时,眼睛(在A点)到水平地面的距离AD=91cm,沿AB方向观测物体的仰角a=33°.望远镜前端(B点)与眼睛(A点)之间的距离AB=153cm,求点B到水平地面的距离BC的长(精确到0.1cm).
[参考数据:sin33°=0.54,cos33°=0.84,tan33°=0.65].
(2010·巴中)巴中市某中学数学兴趣小组在开展“保护环境,爱护树木”的活动中,利用课外时间测量一棵古树的高,由于树的周围有水池,同学们在低于树基3.3米的一平坝内(如图),测得树顶A的仰角∠ACB=60°,沿直线BC后退6米到点D,又测得树顶A的仰角∠ADB=45°,若测角仪DE高1.3米,求这棵树的高AM.(结果保留两位小数,
3
≈1.732)
第一页
上一页
63
64
65
66
67
下一页
最后一页
178506
178508
178510
178512
178514
178515
178517
178519
178521
178522