数学
坡度是指斜坡
垂直高度
垂直高度
与
水平宽度
水平宽度
的比.坡角是斜坡与
水平线所夹的锐角
水平线所夹的锐角
,坡度i一般写成
1:m
1:m
的形式.
某一楼梯高度为3m,坡角为30°,要在这个楼梯上铺地毯,那么地毯的长度至少为
3
3
+3
3
3
+3
米.
如图,燕尾槽的横断面中,槽口的形状是等腰梯形,其外口宽AD=15mm,槽的深度为12mm,∠B的正切值为
4
3
,则它的里口宽BC=
33
33
mm.
已知公路路基横断面为一等腰梯形,腰的坡度为2:3,路基高为4米,底宽为20米,则路基顶宽为
8
8
米.
如图,铁路路基横断面为一个等腰梯形,已知腰的坡度为2:3,顶宽为3m,路基高为4m,那么路基的下底宽是
15m
15m
.
动物园中,猴山上有一段坡路,每前进100m,路面就上升4m,则猴山上的这段坡路的坡角约为
2°
2°
(精确到1°).
某风景区山高AB为700米,为了游客的方便,景区设置了索道,如图,索道路线为C→D→A,其中C是山脚,D是中转站.已知中转站D到山底的垂直高度为300米,D与B的水平距离为300米,∠DCB=30°,缆车的速度为5米/秒,那么如果坐缆车上山,从山底到山顶大约需
3
2
3
3
2
3
分钟.
已知在一段坡面上,铅直高度为
3
,坡面长为2
3
,则坡度等于
3
3
3
3
,坡角等于
30°
30°
.
(2013·岳阳)某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.
(1)求舞台的高AC(结果保留根号);
(2)在楼梯口B左侧正前方距离舞台底部C点3m处有一株大树,修新楼梯AD时底端D是否会触到大树?并说明理由.
(2013·三明)(1)解不等式组
x-3≤0
5(x-1)+6>4x
并把解集在数轴上表示出来;
(2)如图,已知墙高AB为6.5米,将一长为6米的梯子CD斜靠在墙面,梯子与地面所成的角∠BCD=55°,此时梯子的顶端与墙顶的距离AD约为多少米?(结果精确到0.1米)(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
第一页
上一页
34
35
36
37
38
下一页
最后一页
177951
177953
177955
177957
177959
177961
177963
177964
177967
177968