数学
(2006·双柏县)阅读下列材料,并解决后面的问题.
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.过A作AD⊥BC于D(如图),则sinB=
AD
c
,sinC=
AD
b
,即AD=csinB,AD=bsinC,于是csinB=bsinC,
即
b
sinB
=
c
sinC
.同理有
c
sinC
=
a
sinA
,
a
sinA
=
b
sinB
.
所以
a
sinA
=
b
sinB
=
c
sinC
…(*)
即:在一个三角形中,各边和它所对角的正弦的比相等.
(1)在锐角三角形中,若已知三个元素a、b、∠A,运用上述结论(*)和有关定理就可以求出其余三个未知元素c、∠B、∠C,请你按照下列步骤填空,完成求解过程:
第一步:由条件a、b、∠A
用关系式
a
sinA
=
b
sinB
,
a
sinA
=
b
sinB
,
求出
∠B;
第二步:由条件∠A、∠B
用关系式
∠A+∠B+∠C=180°
∠A+∠B+∠C=180°
求出
∠C;
第三步:由条件
b,∠B,∠C
b,∠B,∠C
用关系式
b
sinB
=
c
sinC
,
b
sinB
=
c
sinC
,
求出
c.
(2)如图,已知:∠A=60°,∠C=75°,a=6,运用上述结论(*)试求b.
(2006·沈阳)如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在第二象限内,点B、点C在x轴的负半轴上,∠CAO=30°,OA=4.
(1)求点C的坐标;
(2)如图,将△ACB绕点C按顺时针方向旋转30°到△A′CB′的位置,其中A’C交直线OA于点E,A’B’分别交直线OA、CA于点F、G,则除△A′B′C≌△AOC外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线)
(3)在(2)的基础上,将△A′CB′绕点C按顺时针方向继续旋转,当△COE的面积为
3
4
时,求直线CE的函数表达式.
(2006·宁波)已知⊙O过点D(4,3),点H与点D关于y轴对称,过H作⊙O的切线交y轴于点A(如图1).
(1)求⊙O半径;
(2)sin∠HAO的值;
(3)如图2,设⊙O与y轴正半轴交点P,点E、F是线段OP上的动点(与P点不重合),连接并延长DE,DF交⊙O于点B,C,直线BC交y轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化?请说明理由.
(2006·辽宁)如图,AB是⊙O的直径,AC是弦,OD⊥AB交AC于点D.若∠A=30°,OD=20cm.求CD的长.
(2006·兰州)如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN以点P为旋转中心,PM边与PO重合的位置
开始,按逆时针方向旋转(∠MPN保持不变)时,M、N两点在射线OB上同时以不同的速度向右平行移动.设OM=x,ON=y(y>x>0),△POM的面积为S.若sinα=
3
2
,OP=2.
(1)当∠MPN旋转30°(即∠OPM=30°)时,求点N移动的距离;
(2)求证:△OPN∽△PMN;
(3)写出y与x之间的关系式;
(4)试写出S随x变化的函数关系式,并确定S的取值范围.
(2006·海淀区)如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.
(1)若sin∠BAD=
3
5
,求CD的长;
(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).
(2006·广东)如图,已知:⊙O的半径是8,从⊙O外一点P,引圆的两条切线PA,PB,切点分别
为A,B.
(1)若∠APB=70°,求AP的长度(结果精确到0.1);
(2)当OP为何值时,∠APB=90°.
(参考数据:sin35°≈0.5736,cos35°≈0.8191,tan35°≈0.7002,cot35°≈1.4281)
(2006·广安)如图,已知AB是⊙O的直径,直线l与⊙O相切于点C且
AC
=
AD
,弦CD交AB于E,BF⊥l,垂
足为F,BF交⊙O于G.
(1)求证:CE
2
=FG·FB;
(2)若tan∠CBF=
1
2
,AE=3,求⊙O的直径.
(2006·福州)我们知道,“直角三角形斜边上的高线将三角形分成两个与原三角形相似的直角三角形”用这一方法,将矩形ABCD分割成大小不同的七个相似直角三角形.按从大到小的顺序编号为①至⑦(如图),从而割成一副“三角七巧板”.已
知线段AB=1,∠BAC=θ.
(1)请用θ的三角函数表示线段BE的长
sinθ
sinθ
;
(2)图中与线段BE相等的线段是
DF
DF
;
(3)仔细观察图形,求出⑦中最短的直角边DH的长.(用θ的三角函数表示)
(2006·达州)先阅读短文,再解答短文后面的问题.
规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为
AB
(起点字母A写在前面,终点字母B写在后面).线段AB的长度叫做有向线AB的长度(或模),记为|
AB
|.显然,有向线段
AB
和有向线段
BA
长度相同.方向不同,它们不是同一条有向线段.
对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段
OP
,其方向与x轴正方向相同,长度(或模)是|
OP
|=3.
问题:
(1)在如图所示的平面直角坐标系中画出
OA
有向线段,使得
OA
=3
2
,
OA
与x轴正半轴的夹角是45°,且与y轴的负半轴的夹角是45°;
(2)若有向线段
OB
的终点B的坐标为(3,
3
),试求出它的模及它与x轴正半轴的夹角;
(3)若点M、A、P在同一直线上,
|
MA
|+|
AP
|=|
MP
|
成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中)
第一页
上一页
222
223
224
225
226
下一页
最后一页
181594
181596
181599
181601
181603
181606
181608
181610
181612
181614