题目:
(2006·兰州)如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN以点P为旋转中心,PM边与PO重合的位置

开始,按逆时针方向旋转(∠MPN保持不变)时,M、N两点在射线OB上同时以不同的速度向右平行移动.设OM=x,ON=y(y>x>0),△POM的面积为S.若sinα=
,OP=2.
(1)当∠MPN旋转30°(即∠OPM=30°)时,求点N移动的距离;
(2)求证:△OPN∽△PMN;
(3)写出y与x之间的关系式;
(4)试写出S随x变化的函数关系式,并确定S的取值范围.
答案

(1)解:∵sinα=
且α为锐角,
∴α=60°,即∠BOA=∠MPN=60°.(1分)
∴初始状态时,△PON为等边三角形,
∴ON=OP=2,当PM旋转到PM'时,点N移动到N',
∵∠OPM'=30°,∠BOA=∠M'PN'=60°,
∴∠M'N'P=30°.(2分)
在Rt△OPM'中,ON'=2PO=2×2=4,
∴NN'=ON'-ON=4-2=2,
∴点N移动的距离为2; (3分)
(2)证明:在△OPN和△PMN中,
∠PON=∠MPN=60°,∠ONP=∠PNM,

∴△OPN∽△PMN; (4分)
(3)解:∵MN=ON-OM=y-x,
∴PN
2=ON·MN=y(y-x)=y
2-xy.
过P点作PD⊥OB,垂足为D.
在Rt△OPD中,
OD=OP·cos60°=2×
=1,PD=POsin60°=
,
∴DN=ON-OD=y-1.
在Rt△PND中,
PN
2=PD
2+DN
2=(
)
2+(y-1)
2=y
2-2y+4.(5分)
∴y
2-xy=y
2-2y+4,
即y=
; (6分)
(4)解:在△OPM中,OM边上的高PD为
,
∴S=
·OM·PD=
·x·
=x.(8分)
∵y>0,
∴2-x>0,即x<2.
又∵x>0,
∴x的取值范围是0<x<2.
∵S是x的正比例函数,且比例系数
>0,
∴0<S<
×2,即0<S<
. (9分)

(1)解:∵sinα=
且α为锐角,
∴α=60°,即∠BOA=∠MPN=60°.(1分)
∴初始状态时,△PON为等边三角形,
∴ON=OP=2,当PM旋转到PM'时,点N移动到N',
∵∠OPM'=30°,∠BOA=∠M'PN'=60°,
∴∠M'N'P=30°.(2分)
在Rt△OPM'中,ON'=2PO=2×2=4,
∴NN'=ON'-ON=4-2=2,
∴点N移动的距离为2; (3分)
(2)证明:在△OPN和△PMN中,
∠PON=∠MPN=60°,∠ONP=∠PNM,

∴△OPN∽△PMN; (4分)
(3)解:∵MN=ON-OM=y-x,
∴PN
2=ON·MN=y(y-x)=y
2-xy.
过P点作PD⊥OB,垂足为D.
在Rt△OPD中,
OD=OP·cos60°=2×
=1,PD=POsin60°=
,
∴DN=ON-OD=y-1.
在Rt△PND中,
PN
2=PD
2+DN
2=(
)
2+(y-1)
2=y
2-2y+4.(5分)
∴y
2-xy=y
2-2y+4,
即y=
; (6分)
(4)解:在△OPM中,OM边上的高PD为
,
∴S=
·OM·PD=
·x·
=x.(8分)
∵y>0,
∴2-x>0,即x<2.
又∵x>0,
∴x的取值范围是0<x<2.
∵S是x的正比例函数,且比例系数
>0,
∴0<S<
×2,即0<S<
. (9分)