数学
如图5,有长为24米的铁栅栏,一面利用墙(墙的最大可用长度为10米),围成中间隔有
一道铁栅栏后成两个小长方形的临时仓库.设仓库的宽AB为x米,面积为S平方米.
(1)求S与x的函数解析式,并写出它的定义域.
(2)如果要围成面积为45平方米的临时仓库,AB的长应是多少米?
某小区为了改善居住环境,准备修建一个矩形花园ABCD,为了节约材料并种植不同类花,决定花园一边靠墙,三边用栅栏围住,中间用一段垂直于墙的栅栏隔成两块,已知所用栅栏的总长为60米,墙长为30米(如图),设花园垂直于墙的一边的长为x米.
(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及自变量x的取值范围;
(2)当x为何值时,这个矩形花园的面积最大?最大值是多少?(栅栏占地面积忽略不计);
(3)当这个花园的面积不小288平方米时,试结合函数图象,直接写出x的取值范围.
我市“鲁能星城”房地产开发公司于2010年5月份完工一商品房小区.月销售价格y
1
(单位:万元/m
2
)与月份x(6≤x≤11,x为整数)之间满足下列表格:
月份x
6
7
8
…
月销售价y
1
0.7
0.72
0.74
…
每月的销售面积为y
2
(单位:m
2
),其中y
2
=-2000x+26000(6≤x≤11,x为整数).
(1)根据表格求出y
1
与月份x的函数关系式并验证;
(2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?
(3)2010年11月时,因会受到即将实行的“国八条”和房产税政策的影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少20a%,于是决定将12月份的销售价格在11月的基础上增加a%(其中a>0),该计划顺利完成.为了尽快收回资金,2011年1月公司进行降价促销,该月销售额为(1500+600a)万元.这样12月、1月的销售额共为4620万元,请根据以上条件求出a的值 (结果保留一位小数,参考数据:
32
≈5.66
33
≈5.74
34
≈5.80
)
某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润y(万元)和月份n之间满足函数关系式y=-n
2
+14n-24.
(1)若利润为21万元,求n的值.
(2)哪一个月能够获得最大利润,最大利润是多少?
(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份?
如图在矩形ABCD的边上截取AH=AG=CE=CF=x,已知AB=8,BC=6,
求:(1)四边形EHGF的面积s关于x的函数表达式和x的取值范围;
(2)当x为何值时,s的数值等于x的4倍;
(3)四边形EHGF的面积有可能等于25吗?为什么?
学校计划用地砖铺设教学楼前的矩形广场ABCD,已知矩形广场的长为100米,宽为60米图案如图所示:广场四角为矩形,阴影部分为矩形,中心为正方形.阴影部分铺设绿色地砖,其余铺设白色地砖.
(1)要使铺设绿色地砖的面积为2750平方米,那么中心小正方形的边长为多少?
(2)若铺设绿色地砖的费用为30元每平方米.白色地砖的费用为20元每平方米.当中心小正方形的边长为多少时铺设整个广场的总费用最大,最大是多少?
为了响应国家推行“节能减排,低碳经济”号召,某公司2011年研发出一种新型节能产品,2011年下半年上市后价格一路攀高.该产品的售价y(元/个)与月份x(7≤x≤12,且x取正整数)之间的关系如下表:
月份x
7月
8月
9月
10月
…
售价 y(元/个)
56
60
64
68
…
该产品的月销售量p(百个)与月份x(7≤x≤12,且x取正整数)之间满足函数关系:p=-2x+50.
(1)请观察题中格,用所学过一次函数、反比例函数或二次函数有关知识,求出该产品的售价y(元/个)与月份x的函数关系式;
(2)请问该公司第几月份销售额达到最大?最大销售额是多少元?
(3)今1月份开始售价上涨减缓,每月比上月上涨2元/个,且月销售量在去年12月的月销售量的基础上每月减少300个.4月下旬以来,全国各地严重缺电,受“电荒限电”的影响,该公司5月产量下降,导致5月的销售量比4月份下降1.5a%.该公司为了稳定销售额,决定涨价销售,5月的销售价格比4月份上涨0.5a%.此种商品在第5月的销售额比第4月的销售额刚好少16800元,请你参考以下数据,通过计算估算出的a整数值.
(自编题)某品牌专卖店准备采购数量相同的男女情侣衬衫,并以相同的销售价x(元)进行销售,男衬衫的进价为30元,当定价为50元时,月销售量为120件,售价不超过100元时,价格每上涨1元,销量减少1件;售价超过100元时,超过100元的部分,每上涨1元,销量减少2件.受投放量限制衬衫公司要求该专卖店每种衬衫每月订购件数不得低于30件且不得超过120件.该品牌专卖店销售男衬衫利润为y
1
(元),销售女衬衫的月利润为y
2
(元),且y
2
与x间的函数关系式为
y
2
=
20x-800(50≤x≤80)
-10x+1600(80<x≤120)
,销售这两种衬衫的月利润W(元)是y
1
与y
2
的和.
(1)求自变量x取值范围
(2)求y
1
与x间的函数关系式;
(3)求出W关于x的函数关系式;
(4)该专卖店经理应该如何采购,如何定价,才能使每月获得的总收益W最大?说明理由.
某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x之间的函数关系式(不必写出自变量x的取值范围);
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(4)商店要想月销售利润最大,销售单价应定为多少元?最大月销售利润是多少?
重庆西永微电园入驻企业----方正集团开发了一种新型电子产品,是未来五年IT行业倍受青睐的产品.在五年销售期限内,方正集团每年对该产品最多可投入100万元销售投资,该集团营销部门根据市场分析,对该产品的销售投资收益拟定了两种销售方案:
方案一:只在国内销售,每投入x万元,每年可获得利润P与x关系如下表所示:
x (万元)
…
50
60
70
80
…
P(万元)
…
40
41
40
37
…
方案二:五年销售期限内,每年均投入100万元销售投资.前两年中,每年拨出50万元用于筹备国际营销平台,两年筹备完成,完成前该产品只能在国内销售;国际营销平台完成后的3年中,该产品既在国内销售,也在国外销售,在国内销售的投资收益仍满足方案一,而在国外销售的投资收益为:每年投入x万元,可获年利润
Q=-
99
100
(100-x
)
2
+
294
5
(100-x)+160
(万元).
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出P与x之间的函数关系式,并求出选择方案一该集团每年所获利润的最大值.
(2)若选择方案二,设后3年中每年用于国内销售的投入为n(万元),则n为何值时可使这5年所获总利润(扣除筹备国际营销平台资金后)最大?并求出该最大值.
(3)方正集团的国际营销平台也可销售该集团其它产品,方正集团决定将另一种产品也销往国外.已知,该产品在国内销售情况为:售价y(元/件)与销量a(件)的函数关系式为y=
-
1
100
a+120,成本为20元/件;国外销售情况为:价格为120元/件,国外销售成本为40元/件.该集团要将8000件产品全部销售完并获得312000元的利润,该集团该怎样安排国内的销售量?(精确到个位)
(参考数据:
2
≈1.414
3
≈1.732
5
≈2.236
)
第一页
上一页
63
64
65
66
67
下一页
最后一页
166884
166886
166888
166890
166891
166892
166894
166895
166896
166898