数学
如图,二次函数y=ax
2
+bx-8(a≠0)的图象与x轴交于点A(-2,0),B(4,0)两点,与y轴交于点C,T为抛物线的顶点.
(1)在x轴下方的抛物线上有一点D,以A,C,D,B四点为顶点的四边形ACDB是等腰梯形,请直接写出D点的坐标;
(2)过点B作两条互相垂直的直线l
1
,l
2
,在抛物线的对称轴上是否存在点P,使得以点P为圆心的圆过原点,且与直线l
1
,l
2
都相切?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)直线CT交x轴于点E,点F(m,n)是射线ET上的一个动点,
将抛物线沿其对称轴向下平移2个单位长度,若平移后的抛物线与线段EF只有一个公共点,试分别计算实数m,n的取值范围.
如图:抛物线 y=x
2
+4x+k与轴交于A、B两点,设此抛物线的顶点为C
(1)求抛物线顶点C的坐标(用k表示)
(2)若△ABC为直角三角形,求k的值.
(3)若△ABC是等边三角形,k的值是多少?(直接写出答案)
如图,直线
y=
3
3
x+b
经过点B(
-
3
,2),且与x轴交于点A.将抛物线
y=
1
3
x
2
沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.
(1)求∠BAO的度数;
(2)直线AB交抛物线
y=
1
3
x
2
的右侧于点D,问点B是AD中点吗?试说明理由;
(3)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F.当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式.
如图,已知抛物线
y=
1
2
x
2
+bx+c
与x轴交于A (-4,0)和B(1,0)两点,与y轴交于C点.
(1)求此抛物线的解析式;
(2)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标.
已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.现以O为坐标原点,OA所在直线为
x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax
2
+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,问:是否存在这样的点P,使得⊙P与两坐标轴都相切?若存在,请求出此时⊙P半径R的值;若不存在,请说明理由.
如图,矩形ABCD的顶点B、C在x轴上,A、D在抛物线y=ax
2
+bx上,且y=ax
2
+bx的最大值是2,y=ax
2
+bx与x轴的正半轴的交点E的坐标是(2,0).
(1)求a,b的值;
(2)若矩形的顶点均为动点,且矩形在抛物线与x轴围成的封闭区域内,试探索:是否存在周长为3的矩形?若存在,求出此时B点的坐标;若不存在说明理由.
如图,抛物线与x轴交于A(x
1
,0)、B(x
2
,0)两点,且x
1
<x
2
,与y轴交于点C(0,-4),其中x
1
,x
2
是方程x
2
-4x-12=0的两个根.
(1)求A、B两点坐标;
(2)求抛物线的解析式;
(3)点M是线段AB上的一个动点(不与A、B两点重合),过点M作MN∥BC,交AC于点N,连接CM,在M点运动时,△CMN的面积是否存在最大值?若存在,求出△CMN面积最大时点M的坐标;若不存在,请说明理由.
已知:二次函数y=ax
2
+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴
的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x
2
-10x+16=0的两个根,且A点坐标为(-6,0).
(1)求此二次函数的表达式;
(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
如图,已知抛物线y=ax
2
+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且点C、D是抛物线上的一对对称点.
(1)求抛物线的解析式;
(2)求点D的坐标,并在图中画出直线BD;
(3)求出直线BD的一次函数解析式,并根据图象回答:当x满足什么条件时,上述二次函数的值大于该一次函数的值.
如图①,抛物线y=ax
2
+bx+5交x轴于A、B,交y轴于C,抛物线的顶点D的横坐标为4,OA·OC=OB.
(1)求抛物线的解析式;
(2)如图②,若P为抛物线上一动点,PQ∥y轴交直线l:y=
3
4
x
+9于点Q,以PQ为对角线作矩形且使得矩形的一边在直线l上,问是否存在这样一点P使得矩形的面积最小?若存在,求其最小值;若不存在,请说明理由
(3)如图③,将直线向下平移m个单位(m>9),设平移后的直线交抛物线于M、N两点(点M在点N左边),M关于原点的对称点为M′,连接M′N,问M′N在x轴上的正投影是否为定值?若为定值,求其值;若不是定值,请说明理由.
第一页
上一页
106
107
108
109
110
下一页
最后一页
167613
167615
167618
167620
167621
167622
167624
167625
167626
167628