数学
已知,开口向上的抛物线y=ax
2
+bx+c与x轴交于点A(-6,0),另一个交点是B,与y轴的交点是C,且抛物线的顶点的纵坐标是-2,△AOC的面积为6
3
(1)求点B、C的坐标;
(2)求抛物线的解析式;
(3)M点从点A出发向点C以每秒
3
2
个单位匀速运动.同时点P以每秒2个单位的速度从A点出发,沿折线AB、BC向点C匀速运动,在运动的过程中,设△AMP的面积为y,运动的时间为x,求y与x的函数关系式及y的最大值;
(4)在运动的过程中,过点M作MN∥x轴交BC边于N,试问,在x轴上是否存在点Q,使△MNQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
已知抛物线a、b的解析式分别是关于y与x的关系式:
y=
x
2
-2mx-
m
2
2
与
y=-
x
2
-2mx+
m
2
+2
2
.
(1)请用2种不同的方法,判断抛物线a、b中哪条经过点E,哪条经过点F?
(2)当m等于某数时,这两条抛物线中,只有一条与x轴交于A、B(A点在左)两个不同的点,问是哪条抛物线经过A、B两点?为什么?并求出A、B两点的坐标;
(3)当m=1时,直线x=n在两抛物线的对称轴之间平行移动,并且分别与两抛物线交于C、D两点,设线段CD的长为w,那么请写出w与n之间的函数关系,并问当n为什么值时w最大,最大值是多少?
如图①,直线y=x-3与x轴、y轴分别交于B、C两点,点A在x轴负半轴上,且
OA
OC
=
1
3
,抛物线经过A、B、C三点,D为线段AB中点,点P(m,n)是该抛物线上的一个动点(其中m>0,n<0),连接DP交BC于点E.
(1)写出A、B、C三点的坐标,并求抛物线的解析式;
(2)当△BDE是等腰三角形时,直接写出此时点E的坐标;
(3)连接PC、PB(如图②),△PBC是否有最大面积?若有,求出△PBC的最大面积和此时P点的坐标;若没有,请说明理由.
如图,在平面直角坐标系中,以A(3,0)为圆心,以5为半径的圆与x轴相交于B、C,与y轴的负半轴相交于D.
(1)若抛物线y=ax
2
+bx+c经过B、C、D三点,求此抛物线的解析式,并写出抛物线与圆A的另一个交点E的坐标;
(2)若动直线MN(MN∥x轴)从点D开始,以每秒1个长度单位的速度沿y轴的正方向移动,且与线段CD、y轴分别交于M、N两点,动点P同时从点C出发,在线段OC上以每秒2个长度单位的速度向原点O运动,连接PM,设运动时间为t秒,当t为何值时,
MN·OP
MN+OP
的值最大,并求出最大值;
(3)在(2)的条件下,若以P、C、M为顶点的三角形与△OCD相似,求实数t的值.
如图1,在平面直角坐标系x0y中,已知抛物线y=a(x+1)
2
+c(a>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为y=kx-3,且cos∠BCO=
3
10
10
.
(1)求此抛物线的函数表达式;
(2)如图2,若对称轴与x轴的交点为N,在第三象限此抛物线上是否存在点P,将线段PN绕N点逆时针旋转90°后,点P的对应点Q落在直线MC上?若存在,求出点P的坐标:若不存在,请说明理由;
(3)如图3,若将直线MC沿y轴向上平移m个单位,与抛物线交于D、E两点,与两坐标轴交于F、G两点(点F、G均在线段DE上),分别过D、E两点作DH⊥x轴于H,EI⊥y轴于I,当四边形DHIE为等腰梯形时,求出m的值.
如图,直线y=
3
5
x-4分别交x、y轴于A、B两点,O为坐标原点.
(1)求B点的坐标;
(2)若D是OA中点,过A的直线l(3)把△AOB分成面积相等的两部分,并交y轴于点C.
①求过A、C、D三点的抛物线的函数解析式;
②把①中的抛物线向上平移,设平移后的抛物线与x轴的两个交点分别为M、N,试问过M、N、B三点的圆的面积是否存在最小值?若存在,求出圆的面积;若不存在,请说明理由.
在平面直角坐标系内,二次函数y=ax
2
+bx+c图象与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C(0,4),直线y=x+1与二次函数的图象交于A、D两点,
(1)求出二次函数的解析式以及D点的坐标;
(2)点P是直线AD上方抛物线上的一点,连结PB,交AD于点E,使
PE
BE
=
4
5
,求出符合要求的点P的坐标;
(3)在(2)的条件下,连结PD,
①直接写出PD与AD的关系
PD⊥AD
PD⊥AD
;
②点M是平面内一点,使△PDM∽△ADB,求符合要求的所有点M的坐标.
如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x
2
+bx+c经过原点O和点P,已知矩形的三个顶点为A(1,0),B(1,-5),D(4,0).当4<t<5时,设抛物线分别与线段AB、CD交于点M、N.
(1)你认为∠AMP的大小会随点M位置的变化而变化吗?若变化,说明理由,若不变,求出∠AMP的大小.
(2)把△MPN的面积S用t表示出来.
(3)若△MPN的面积S=
21
8
,求此时图象过M、N两点的一次函数解析式;若E是此时抛物线MN段上的一动点,当三角形MNE面积最大时,E点的坐标是多少?(结果可直接写出)
如图,直线y=-
3
4
x+3分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,设运动时间为t秒.
(1)直接填出两点的坐标:A:
(4,0)
(4,0)
,B:
(0,3)
(0,3)
;
(2)过点P作直线截△ABO,使截得的三角形与△ABO相似,若当P在某一位置时,满足条件的直线共有4条,t的取值范围是
0<t≤
9
4
0<t≤
9
4
;
(3)如图,过点P作x轴的垂线交直线AB于点C,设以C为顶点的抛物线 y=(x+m)
2
+n与直线AB的另一交点为D,
①用含t的代数式分别表示m=
-t
-t
,n=
-
3
4
t+3
-
3
4
t+3
;
②随着点P运动,CD的长是否为定值?若是,请求出CD长;若不是,说明理由;
③设△COD的OC边上的高为h,请直接写出当t为何值时,h的值最大?
如图,抛物线y=ax
2
-2ax+b与x轴交于A、B两点,交y轴负半轴于点C,已知B(3,0),tan∠OAC=3.
(1)求抛物线解析式;
(2)将抛物线作适当平移,平移后的抛物线始终经过点C,设平移后的抛物线交x轴于M、N两点,若S
△CMN
=2S
△CAB
,求平移后的抛物线的解析式;
(3)已知D点是抛物线的顶点,E是抛物线在第三象限部分上的点,是否存在这样的点E,使点E关于直线BC的对称点恰好在直线BD上?若存在,求E点的坐标;若不存在,请说明理由.
第一页
上一页
102
103
104
105
106
下一页
最后一页
167540
167541
167543
167544
167546
167548
167549
167551
167553
167555