数学
写出下列命题的已知、求证,并完成证明过程.
命题:三角形的中位线平行于三角形的第三边并且等于第三边的一半.
已知:如图,
求证:
DE∥BC,DE=
1
2
BC
DE∥BC,DE=
1
2
BC
.证明:
如下
如下
.
如图,已知△ABC中,AH⊥BC于点H,E,F分别是AC,AB的中点,请推测△EFH的面积与△ABC面积的关系,并证明.
如图△ABC中,AF=FD=DH=HB,AG=GE=EK=KC,已知BC=12.求FG、DE、HK的长.
如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)请判断四边形EFGH的形状?并说明为什么.
(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?
(3)在(2)的条件下,若EF=2,求四边形ABCD的面积.
如图△ABC中,过点A分别作∠ABC、∠ACB的外角的平分线的垂线AD,AE,D,E为垂足.
求证:(1)ED∥BC;
(2)
ED=
1
2
(AB+AC+BC)
.
如图,在△ABC中,∠CAB=90°,F是AC边的中点,FE∥AB交BC于点E,D是BA延长线上一点,且DF=BE.求证:AD=
1
2
AB.
已知:如图,在△ABC中,AD平分∠BAC,CN⊥AD于E交AB于N,F是AC的中点,FE的延长线交BC于M.试判断BM=MC的正确性.如果正确,请给出证明过程;若不正确,请说明理由.
如图所示,已知△ABC的周长为1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,依此类推,第2008个三角形的周长为
(
1
2
)
2007
(
1
2
)
2007
.
如图,一个三角形的周长为1,它的三条中位线组成第2个三角形,第2个三角形的三条中位线组成第3个三角形,照上述方法继续做下去,则第6个三角形的周长为
1
2
5
1
2
5
.
如图,在△MBN中,已知:BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是
13
13
.
第一页
上一页
40
41
42
43
44
下一页
最后一页
112779
112781
112782
112784
112787
112789
112791
112793
112794
112796