数学
(2013·鞍山)如图,已知线段a及∠O,只用直尺和圆规,求作△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)
(2012·天水)Ⅰ.已知线段a,h如图所示,求作等腰三角形ABC,使得底边BC=a,BC边上的高为h.(保留作图痕迹,不写作法)
Ⅱ.解方程.
3
x-2
+
x-3
2-x
=1.
(2012·莆田)如图,四边形ABCD是平行四边形,连接AC.
(1)请根据以下语句画图,并标上相应的字母(用黑色字迹的钢笔或签字笔画).
①过点A画AE⊥BC于点E;
②过点C画CF∥AE,交AD于点F;
(2)在完成(1)后的图形中(不再添加其它线段和字母),请你找出一对全等三角形,并予以证明.
(2012·河源)如图,已知△ABC,按如下步骤作图:
①分别以A、C为圆心,以大于
1
2
AC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、CD.
(1)求证:四边形ADCE是菱形;
(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.
(2012·佛山)(1)按语句作图并回答:
作线段AC(AC=4),以A为圆心a为半径作圆,再以C为圆心b为半径作圆(a<4,b<4,圆A与圆C交于B、D两点),连接AB、BC、CD、DA.
若能作出满足要求的四边形ABCD,则a、b应满足什么条件?
(2)若a=2,b=3,求四边形ABCD的面积.
(2012·北海)已知:如图,在△ABC中,∠A=30°,∠B=60°.
(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);
(2)连接DE,求证:△ADE≌△BDE.
(2011·扬州)已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2
3
,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)
(2011·青岛)如图,已知线段a和h.
求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.
要求:尺规作图,不写作法,保留作图痕迹.
(2011·贵港)按要求用尺规作图(只保留作图痕迹,不必写出作法)
(1)在图(1)中作出∠ABC的平分线;
(2)在图(2)中作出△DEF的外接圆O.
(2011·滨州)根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC恰好分割成两个等腰三角形(不写作法,但需保留作图痕迹);并根据每种情况分别猜想:∠A与∠B有怎样的数量关系时才能完成以上作图?并举例验证猜想所得结论.
(1)如图①△ABC中,∠C=90°,∠A=24°
①作图:
②猜想:
③验证:
(2)如图②△ABC中,∠C=84°,∠A=24°.
①作图:
②猜想:
③验证:
第一页
上一页
78
79
80
81
82
下一页
最后一页
184913
184915
184917
184920
184922
184923
184925
184927
184929
184931