试题
题目:
(2012·佛山)(1)按语句作图并回答:
作线段AC(AC=4),以A为圆心a为半径作圆,再以C为圆心b为半径作圆(a<4,b<4,圆A与圆C交于B、D两点),连接AB、BC、CD、DA.
若能作出满足要求的四边形ABCD,则a、b应满足什么条件?
(2)若a=2,b=3,求四边形ABCD的面积.
答案
(1)解:
能作出满足要求的四边形ABCD,则a、b应满足的条件是a<4,b<4,4<a+b<8且|a-b|<4.
(2)解:连接BD,交AC于E,
∵⊙A与⊙C交于B、D,
∴AC⊥DB,BE=DE,
设CE=x,则AE=4-x,
∵由勾股定理得:BE
2
=3
2
-x
2
=2
2
-(4-x)
2
,
解得:x=
21
8
,
∴BE=
3
2
-(
21
8
)
2
=
3
15
8
,
则四边形ABCD的面积是2×
1
2
×AC×BE=4×
3
15
8
=
3
15
2
,
答:四边形ABCD的面积是
3
15
2
.
(1)解:
能作出满足要求的四边形ABCD,则a、b应满足的条件是a<4,b<4,4<a+b<8且|a-b|<4.
(2)解:连接BD,交AC于E,
∵⊙A与⊙C交于B、D,
∴AC⊥DB,BE=DE,
设CE=x,则AE=4-x,
∵由勾股定理得:BE
2
=3
2
-x
2
=2
2
-(4-x)
2
,
解得:x=
21
8
,
∴BE=
3
2
-(
21
8
)
2
=
3
15
8
,
则四边形ABCD的面积是2×
1
2
×AC×BE=4×
3
15
8
=
3
15
2
,
答:四边形ABCD的面积是
3
15
2
.
考点梳理
考点
分析
点评
专题
相交两圆的性质;勾股定理;作图—复杂作图.
(1)根据题意画出图形,只有两圆相交,才能得出四边形,即可得出答案;
(2)连接BD,根据相交两圆的性质得出DB⊥AC,BE=DE,设CE=a,则AE=4-a,根据勾股定理得出关于a的方程,求出a,根据三角形的面积公式求出即可.
本题考查了作图-复杂作图,相交两圆的性质,勾股定理的应用,通过做此题培养了学生的动手操作能力和计算能力,题目具有一定的代表性,是一道比较好的题目.
计算题;作图题;压轴题.
找相似题
(2013·河北)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.
以下是甲、乙两同学的作业:
甲:
1.以点C为圆心,AB长为半径画弧;
2.以点A为圆心,BC长为半径画弧;
3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).
乙:
1.连接AC,作线段AC的垂直平分线,交AC于点M;
2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).
对于两人的作业,下列说法正确的是( )
(2013·福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为( )
(2012·河池)用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是( )
(2013·福州质检)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且A、D在BC同侧,连接AD,量一量线段AD的长,约为( )
(2012·栖霞市二模)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于( )