数学
(2013·樊城区模拟)如图,已知△ABC内接于⊙O,弦AD交BC于E,过点D的切线MN交直线AB于M,交直线AC于N.
(1)求证:AE·DE=BE·CE;
(2)连接DB,CD,若MN∥BC,试探究BD与CD的数量关系;
(3)在(2)的条件下,已知AB=6,AN=15,求AD的长.
(2013·大兴区一模)已知:如图,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,连结PB、PO,PO∥BC,
(1)求证:直线PB是⊙O的切线;
(2)求tan∠BCA的值.
(2013·长海县模拟)如图,已知在矩形ABCD中,AD=8,CD=4,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,当B
,E,F三点共线时,两点同时停止运动.设点E移动的时间为t(秒).
(1)求当t为何值时,两点同时停止运动;
(2)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写出t的取值范围;
(3)求当t为何值时,以E,F,C三点为顶点的三角形是等腰三角形;
(4)求当t为何值时,∠BEC=∠BFC.
(2013·北碚区模拟)如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=
4
2
,∠B=45°,动点M从点B出发,沿线段BC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发,沿C→D→A,以同样速度向终点A运动,当其中一个动点到达终点时,
另一个动点也随之停止运动.设运动的时间为t秒.
(1)求线段BC的长度;
(2)求在运动过程中形成的△MCN的面积S与运动的时间t之间的函数关系式,并写出自变量t的取值范围;并求出当t为何值时,△MCN的面积S最大,并求出最大面积;
(3)试探索:当M,N在运动过程中,△MCN是否可能为等腰三角形?若可能,则求出相应的t值;若不可能,说明理由.
(2013·保康县二模)如图,在⊙O中,AB为直径,弦CD⊥直径AB于点M.
(1)若CE为∠ACB的平分线,交⊙O于点E,求∠ABE的度数.
(2)若AM=18,BM=8.求弦CD的长.
(2013·宝应县二模)在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,O为AB上一点,OA=
15
4
,以O为圆心,OA为半径作圆.
(1)试判断⊙O与BC的位置关系,并说明理由;
(2)若⊙O与AC交于点另一点D,求CD的长.
(2013·百色一模)如图,在等腰三角形ABC中,AB=AC,以AC为直径作圆O,与BC交于点E,过点E作ED⊥AB,垂足
为点D,
(1)求证:DE为⊙O的切线;
(2)过O点作EC的垂线,垂足为H,求证:EH·BE=BD·CO.
(2013·安徽模拟)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
(1)如点P为锐角△ABC的费马点.且∠ABC=60°,PA=3,PC=4,求PB的长.
(2)如图(2),在锐角△ABC外侧作等边△ACB′连结BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.
(3)已知锐角△ABC,∠ACB=60°,分别以三边为边向形外作等边三角形ABD,BCE,ACF,请找出△ABC的费马点,并探究S
△ABC
与S
△ABD
的和,S
△BCE
与S
△ACF
的和是否相等.
(2012·中山一模)如图,矩形ABCD,M为CD中点,点E在线段MC上运动,GH垂直平分AE,垂足为O,分别交于AD、BC于点G、H,AB=3,BC=4.
(1)求AE:GH;
(2)设CE=x,四边形AHEG的面积为y,求y关于x的函数关系式;当y取最大值时,判断四边形AHEG的形状,并说明理由.
(2012·镇江二模)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)求证:AD⊥DC;
(2)若
AD=
5
,DC=2,求sin∠CAB的值以及AB的长.
第一页
上一页
256
257
258
259
260
下一页
最后一页
173304
173305
173306
173307
173308
173309
173310
173311
173312
173313