数学
在矩形ABCD中,AB=6,E为CD的中点,AE⊥BD于点P.
(1)试说明:AE=BE;
(2)求sin∠DBE的值;
(3)求矩形ABCD的面积S.
如图,在正方形ABCD中,点M、N分别在AB、BC上,AB=4,AM=1,BN=0.75.
(1)△ADM与△BMN相似吗?为什么?
(2)求∠DMN的度数.
△ABC中,∠ACB=90°,AB=2,点E是BC延长线上的一点,且ED⊥AB,垂足为D,ED与AC交于点H.取AB中点O,连结OH.
(1)若ED=
2
,OD=
1
3
,求HD的长;
(2)若ED=AB,求HD+OH的值.
如图,在平行四边形ABCD中,AB=8,AD=6,E是AB边上一动点,AE=x,DE延长线交CB延长线于点F,设CF=y,求y与x的函数关系式,并画出图象.
如图,在△ABD和△AEC中,E为AD上一点,若∠DAC=∠B,∠AEC=∠BDA.求证:
AE
BD
=
AC
BA
.
如图,锐角三角形ABC中,AD⊥BC,BE⊥AC,垂足分别为D和E,AP∥BC且与BE的延长线交于P,又边
AB、AC的长是关于x的一元二次方程x
2
-x+
1
4
(4m
2
-4m+2)=0的两个根
(1)求m的值;
(2)若AF:FD=2,那么点A、C是否关于直线BE对称?请说明理由,并求AP的值.
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于E,交BC于D.
(1)求证:D是BC的中点;
(2)求证:△BEC∽△ADC;
(3)若CE=5,BD=6.5,求AB的长.
已知:在△ABC中,∠ACB为锐角,D是射线BC上一动点(D与C不重合).以AD为一边向右侧作等边△ADE(C与E不重合),连接CE.
(1)若△ABC为等边三角形,当点D在线段BC上时,(如图1所示),则直线BD与直线CE所夹锐角为
60
60
度;
(2)若△ABC为等边三角形,当点D在线段BC的延长线上时(如图2所示),你在(1)中得到的结论是否仍然成立?请说明理由;
(3)若△ABC不是等边三角形,且BC>AC(如图3所示).试探究当点D在线段BC上时,你在(1)中得到的结论是否仍然成立?若成立,请说明理由;若不成立,请指出当∠ACB满足什么条件时,能使(1)中的结论成立?并说明理由.
如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.
(1)求证:∠ADP=∠EPB;
(2)当
AP
AB
的值等于多少时,△PFD∽△BFP?并说明理由.
已知△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB=
3
,BC=1.连接BF,分别交AC、DC、DE于点P、Q、R.
(1)求证:△BFG∽△FEG;
(2)求出BF的长;
(3)求
BP
QR
=
2
2
(直接写出结果).
第一页
上一页
207
208
209
210
211
下一页
最后一页
172800
172801
172802
172803
172804
172805
172806
172807
172808
172809