数学
(2004·乌鲁木齐)已知抛物线y=-x
2
+(m-4)x+2m+4与x轴相交于A(x
1
,0),B(x
2
,0)与y轴交于点C,且x
1
=-2x
2
(x
1
<x
2
),点A关于y轴的对称点为D.
(1)确定A,B,C三点的坐标;
(2)求过B,C,D三点的抛物线的解析式;
(3)若y=3与(2)小题中所求抛物线交于M,N,以MN为一边,抛物线上任一点P(x,y)为顶点作为平行四边形,若平行四边形面积为S,写出S与P点纵坐标y的函数关系式;
(4)当
1
3
<x<4
时,(3)小题中平行四边形的面积是否有最大值?若有,请求出;若无,请说明理由.
(2004·无锡)已知直线y=-2x+b(b≠0)与x轴交于点A,与y轴交于点B;一抛物线的解析式为y=x
2
-(b+10)x+c.
(1)若该抛物线过点B,且它的顶点P在直线y=-2x+b上,试确定这条抛物线的解析式;
(2)过点B作直线BC⊥AB交x轴于点C,若抛物线的对称轴恰好过C点,试确定直线y=-2x+b的解析式.
(2004·宜昌)如图,已知点A(0,1),C(4,3),E(
15
4
,
23
8
),P是以AC为对角线的矩形ABCD内部(
不在各边上)的一动点,点D在y轴上,抛物线y=ax
2
+bx+1以P为顶点.
(1)说明点A,C,E在一条直线上;
(2)能否判断抛物线y=ax
2
+bx+1的开口方向?请说明理由;
(3)设抛物线y=ax
2
+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点,这时能确定a、b的值吗?若能,请求出a,b的值;若不能,请确定a、b的取值范围.
如图所示,在平面直角坐标系中,抛物线的顶点M到x轴的距离是4,抛物线与x轴相交于
O、P两点,OP=4;
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设点A是抛物线上位于O、M之间的一个动点,过A作x轴的平行线,交抛物线于另一点D,作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长l;
②试问矩形ABCD的周长l是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.
(3)连接OM、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点P外),使得△OMQ也是等腰三角形,简要说明你的理由(不必求出点Q的坐标).
已知二次函数图象的顶点坐标为M(1,0),直线y=x+m与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在y轴上.
(1)求m的值及这个二次函数的解析式;
(2)在x轴上找一点Q,使△QAB的周长最小,并求出此时Q点坐标;
(3)若P(a,0)是x轴上的一个动点,过P作x轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
①设线段DE的长为h,当0<a<3时,求h与a之间的函数关系式;
②若直线AB与抛物线的对称轴交点为N,问是否存在一点P,使以M、N、D、E为顶点的四边形是平行四边形
?若存在,请求出此时P点的坐标;若不存在,请说明理由.
已知抛物线y=ax
2
+bx+c的顶点坐标为P(-4,
-
25
2
),与x轴交于A、B两点,与y轴交于点C,其中B点坐标为(1,0).
(1)求这条抛物线的函数解析式;
(2)若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q使得△ADQ为等腰三角形?若存在,请求出符合条件的点Q的坐标;若不存在,请说明理由.
如图1,抛物线y=ax
2
+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A在x轴上,点C在y轴的正半轴上,线段OA、OC的
(OA<OC)是方程x
2
-5x+4=0的两个根,且抛物线的对称轴是直线x=
5
2
.
(1)求抛物线的解析式;
(2)在线段BC上是否存在一点D,使得S
△ACD
:S
△ABD
=2:1?若存在,求出经过点D的反比例函数的解析式;若不存在,说明理由.
(3)如图2,一个动点P自OC的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线对称轴上的某点(设为点F),最后运动到点C,求点P运动的最短路径长.
如图,已知抛物线
y=-
1
2
x
2
+bx+c
经过A(2,0)、B(0,-6)两点,其对称轴与x轴交于点C.
(1)求该抛物线和直线BC的解析式;
(2)设抛物线与直线BC相交于点D,连接AB、AD,求△ABD的面积.
如图1,抛物线y=ax
2
+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).
(1)求抛物线的解析式;
(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上师范存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,直线y=-x+3与x轴、y轴分别交于A、B两点,对称轴为x=2的抛
物线y=ax
2
+bx+c经过A、B两点,与x轴交于另一点C.
(1)求该抛物线所对应的函数关系式及顶点M的坐标;
(2)将(1)中的抛物线在x轴下方部分沿着x轴翻折,点M的对应点为M′.
①判断点M′是否落在直线AB上,并说明理由;
②若点P(m,n)是直线AB上的动点,点Q是(1)中抛物线上的动点,是否存在点P,使以点P、Q、M、M′为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
第一页
上一页
30
31
32
33
34
下一页
最后一页
937586
937587
937588
937589
937590
937591
937592
937593
937594
937595