数学
(2012·顺义区一模)问题:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是射线CB上任意一点,△ADE是等边三角形,且点D在∠ACB的内部,连接BE.探究线段BE与DE之间的数量关系.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当点D与点C重合时(如图2),请你补全图形.由∠BAC的度数为
60°
60°
,点E落在
AB的中点处
AB的中点处
,容易得出BE与DE之间的数量关系为
BE=DE
BE=DE
;
(2)当点D在如图3的位置时,请你画出图形,研究线段BE与DE之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.
(2012·五通桥区模拟)如图,点C、D 在线段AB上,E、F在AB同侧,DE与CF相交于点O,且AC=BD,CO=DO,∠A=∠B.
求证:AE=BF.
(2012·新化县二模)如图,△PAB与△PCD都是等腰直角三角形,∠APB=∠CPD=90°,连接AC、BD,试猜想线段AC和BD的数量关系,并证明你的猜想.
(2012·云南模拟)如图,四边形ABCD是等腰梯形,AD∥BC,AB=DC,且BE=CF.
(1)求证:AF=DE.
(2)判断△OAD的形状,并证明你的结论.
(2013·安庆二模)如图1,在△ABC中,∠BAC=90°,AB=AC=10,小明同学将一个足够大的透明的三角板的直角顶点放在BC的中点D处.
(1)若三角板的两边与△ABC的边AB、AC分别交于点E、F,求证:△DEF是等腰三角形.
(2)小明同学将三角板绕点D旋转,三角板的两边与△ABC的边AB、AC分别交于点E、F,请你探究四边形AEDF的面积是否变化?若没有变化,请求出四边形AEDF的面积;若有变化,请说明理由.
(3)小明同学继续旋转三角板,如图2,当点E、F分别在AB、CA延长线上时,设BE的长为X,四边形ADEF的面积为S,请探究S与x的函数关系式.
(2013·安溪县质检)已知:如图,BC=EF,∠1=∠2,AO=DO.求证:AB=DE.
(2013·保定一模)阅读:Rt△ABC和Rt△DBE,AB=BC,DB=EB,D在AB上,连接AE,AC,如图1
求证:AE=CD,AE⊥CD.
证明:延长CD交AE于K
在△AEB和△CDB中
∵
∠ABE=∠CBD=90°
AB=BC
BE=DB
∴△AEB≌△CDB(SAS)
∴AE=CD
∠EAB=∠DCB
∵∠DCB+∠CDB=90°
∠ADK=∠CDB
∴∠ADK+∠DAK=90°
∴∠ADK=90°
∴AE⊥CD
(2)类比:若关系和位置关系还成立吗?若成立,请给与证明;若不成立,请说明理由.将(1)中的Rt△DBE绕点逆时针旋转一个锐角,如图2所示,问(1)中线段AE,CD间的数量;
(3)拓展:在图2中,将“AB=BC,DB=EB”改成“BC=kAB,DB=kEB,k>1”其它条件均不变,如图3所示,问(1)中线段AE,CD间的数量关系和位置关系还成立吗?若成立,请给与证明;若不成立,请说明理由.
(2013·长海县模拟)如图,点A、B、C在一条直线上,AE∥DF,AE=DF,AB=CD.求证:∠E=∠F.
(2013·房山区一模)已知:如图,点B、C、E在同一条直线上,AC∥DE,AC=CE,BC=DE,
求证:AB=CD.
(2013·甘井子区一模)如图,点E、F在AC上,AB∥CD,AB=CD,AE=CF,求证:∠B=∠D.
第一页
上一页
51
52
53
54
55
下一页
最后一页
948179
948180
948181
948182
948183
948184
948185
948186
948187
948188