试题
题目:
(2012·新化县二模)如图,△PAB与△PCD都是等腰直角三角形,∠APB=∠CPD=90°,连接AC、BD,试猜想线段AC和BD的数量关系,并证明你的猜想.
答案
答:猜想AC=BD,理由为:
证明:∵△PAB与△PCD都是等腰直角三角形,
∴PA=PB,PC=PD,
又∵∠APB=∠CPD=90°,
∴∠APB-∠BPC=∠CPD-∠BPC,即∠APC=∠BPD,
在△PAC和△PBD中,
∵
PA=PB
∠APC=∠BPD
PC=PD
,
∴△PAC≌△PBD(SAS),
∴AC=BD.
答:猜想AC=BD,理由为:
证明:∵△PAB与△PCD都是等腰直角三角形,
∴PA=PB,PC=PD,
又∵∠APB=∠CPD=90°,
∴∠APB-∠BPC=∠CPD-∠BPC,即∠APC=∠BPD,
在△PAC和△PBD中,
∵
PA=PB
∠APC=∠BPD
PC=PD
,
∴△PAC≌△PBD(SAS),
∴AC=BD.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰直角三角形.
AC与BD的数量关系为相等,理由为:由三角形PAB与三角形PCD为等腰直角三角形,得到PA=PB,PC=PD,且一对直角相等,利用等式的性质得到∠APC=∠BPD,利用SAS可得出三角形APC与三角形BDP全等,利用全等三角形的对应边相等可得出AC=BD,得证.
此题考查了等腰直角三角形的性质,以及全等三角形的判定与性质,利用了转化的思想,是一道探究型题.
探究型.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.