数学
如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长
线于点F,连接CF.
(1)证明:△BDF是等腰直角三角形.
(2)猜想线段AD与CF之间的关系并证明.
如图,在△ABD和△ACE中,有下列四个论断:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.请你以其中三个作为条件,余下的一个作为结论,编一道数学题,并写出解答过程.(要求写出已知,求证及证明过程)
如图,△ABC中,D是BC的中点,F是AC边上一点,点G在FD延长线上,且DG=DF,DE⊥DF,交AB于点E,连结EG、EF.
(1)求证:BG∥AC
(2)请你判断BE+CF与EF的大小关系,并说明理由.
如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.
(1)求证:△ABD≌△ECB;
(2)若∠DBC=60°,BC=6,求AD的长.
已知等腰△ABC中,AB=AC,D是BC的中点,将三角板中的90°角的顶点绕D点在△ABC内旋转,角的两边分别与AB、AC交于E、F,且点E、F不与A、B、C三点重合.
(1)如果∠A=90°,求证:DE=DF;
(2)如果DF∥AB,则结论:“四边形AEDF为直角梯形”是否正确?若正确,请证明;若不正确,请画出草图举反例.
如图,在△ABC中,∠C=90°,∠A=30°,BC=2,D是AB中点,等腰直角三角板的直角顶点落在点D上,使三角板绕点D旋转.
(1)如图1,当三角板两边分别交边AC、BC于F、E时,线段EF与AF、BE有怎样的关系并加以证明.
(2)如图1,设AF=x,四边形CEDF的面积为y.求y关于x的函数关系式,写出自变量x的取值范围.
(3)在旋转过程中,当三角板一边DM经过点C时,另一边DN交CB延长线于点E,连接AE与CD延长线交于H,如图2,求DH的长.
如图①,△ABC是等边三角形,D、E分别为边BC和AC上的点,且BD=CE,过D作BE的平行线,过E作BC的平行线,它们交于点F,连接AF.
(1)求证:△ABE≌△CAD;
(2)试判断△ADF的形状,并说明理由;
(3)若将D、E分别移为边CB的延长线和AC的延长线上的点,其它条件不变(如图②),则△ADF的形状是否改变,说明理由.
如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.观察并猜想AP与CQ之间的大小关系,并证明你的结论.试说明△ABP经过怎样变换可得到△CBQ.
如图,∠C=∠D,CE=DE.求证:AE=BE.
如图所示,点A、C在等腰直角三角形HBE的直角边BH和BE上,且AB=BC,CF⊥HE.EF⊥AE于E.试探究线段AE、EF的数量关系,并证明你的结论.
第一页
上一页
12
13
14
15
16
下一页
最后一页
947684
947685
947686
947687
947688
947689
947690
947691
947692
947693