试题
题目:
如图,△ABC中,D是BC的中点,F是AC边上一点,点G在FD延长线上,且DG=DF,DE⊥DF,交AB于点E,连结EG、EF.
(1)求证:BG∥AC
(2)请你判断BE+CF与EF的大小关系,并说明理由.
答案
证明:(1)∵D是BC的中点,
∴BD=CD,
在△BDG和△CDF,
BD=CD
∠BDG=∠CDF
DG=DF
,
∴△BDG≌△CDF(SAS),
∴∠GBD=∠C,BG=CF,
∴BG∥AC;
(2)∵△BDG≌△CDF,
∴DG=DF,
∵DE⊥DF,
∴EG=EF,
显然有:BE+BG>EG,
∵△BDG≌△CDF,
∴BG=CF,
于是:BE+CF>EF.
证明:(1)∵D是BC的中点,
∴BD=CD,
在△BDG和△CDF,
BD=CD
∠BDG=∠CDF
DG=DF
,
∴△BDG≌△CDF(SAS),
∴∠GBD=∠C,BG=CF,
∴BG∥AC;
(2)∵△BDG≌△CDF,
∴DG=DF,
∵DE⊥DF,
∴EG=EF,
显然有:BE+BG>EG,
∵△BDG≌△CDF,
∴BG=CF,
于是:BE+CF>EF.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
(1)首先根据D是BC的中点得到BD=CD,结合DG=DF,∠BDG=∠CDF,证明△BDG≌△CDF,即∠GBD=∠C,结论证明;
(2)根据△BDG≌△CDF得到DG=DF,结合DE⊥DF得到EG=EF,显然有:BE+BG>EG,即可得到BE+CF>EF.
本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握全等三角形的判定定理,此题难度不大.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.