数学
阅读探究:
例:如图1,△ABC是等边三角形,点M是边BC的中点,∠AMN=60°,且MN交三角形外角的平分线CN于点N、求证:AM=MN.
思路点拨:取的AB中点P,连接PM,易证△APM≌△MCQ从而AM=MN.
问题解决:
(1)如图2,四边形ABCD是正方形,点M是边BC的中点,CN是正方形ABCD的外角∠DCQ的平分线.
①填空:当∠AMN=
90°
90°
°时,AM=MN;
②证明①的结论.
(2)请根据例题和问题(1)的解题过程,在正五边形ABCDE中推广出一个类似的真命题.(请在图3中作出相应图形,标注必要的字母,并写出已知和结论,无需证明.)
如图,已知边长为a的正方形ABCD,点E在AB上,点F在BC的延长线上,EF与AC交于点O,且AE=
CF.
(1)若a=4,则四边形EBFD的面积为
16
16
;
(2)若AE=
1
3
AB,求四边形ACFD与四边形EBFD面积的比;
(3)设BE=m,用含m的式子表示△AOE与△COF面积的差.
如图,制作七巧板的硬纸板正方形ABCD的边长是20厘米,试计算图中标号为1、3、5的图形的面积分别是多少?
友情提示:本题有A、B两题,请你任选一题作答,A题满分9分,B题满分12分.若两题都做,只能按A题评分.
(A题)如图所示,四边形OABC与ODEF均为正方形,CF交OA于P,交DA于Q.
(1)求证:AD=CF.
(2)AD与CF垂直吗?说说你的理由.
(3)当正方形ODEF绕O点在平面内旋转时,(1),(2)的结论是否有变化(不需说明理由).
(B题)如图所示,用两个全等的正方形ABCD和CDFE拼成一矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.
(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE、EF相交于点G、H时,通过观察或测量BG与EH的长度,你能得到什么结论?并证明你的结论.
(2)当直角三角尺的两直角边分别与BE的延长线、EF的延长线相交于点G、H时,你在(1)中得到的结论还成立吗?请画出图形并简要说明理由.
如图,边长为7的正方形OABC放置在平面直角坐标系中,动点P从点C出发,以每秒1个单位的速度向O运动,点Q从点O同时出发,以每秒1个单位的速度向点A运动,到达端点即停止运动,运动时间为t秒,连PQ,BP,BQ
(1)写出B点坐标;
(2)填写下表:
时间t(单位:秒)
1
2
3
4
5
6
OP的长度
OQ的长度
PQ的长度
四边形OPBQ的面积
(1)根据你所填的数据,请你描述线段PQ的长度的变化规律并猜测PQ长度的最小值;
(2)根据你所填的数据,请问四边形OPBQ的面积是否发生变化并证明你的论断;
(3)设点M、N分别是BP、BQ的中点,写出点M,N的坐标,是否存在经过M、M两点的反比例函数?如果存在,求出t的值;如果不存在,说明理由.
观察右图,大正方形由边长为1的小正方形组成
S
O
A
1
C
1
B
1
=1
,
S
O
A
2
C
2
B
2
=1+3=4
…
完成填空
S
O
A
4
C
4
B
4
=
16
16
你能找到它的规律吗?找到后计算1+3+5+…+1999的值.
如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上.
(1)求证:△ABE≌△ADF;
(2)若等边△AEF的周长为6,求正方形ABCD的边长.
如图,点E、F在正方形ABCD的边BC、CD上,且BE=CF,试判断AE、BF的关系,并说明理由.
如图,在正方形ABCD中,如果点P是直线CD上的一个动点(不与点C,D重合),连接PA,分别过B,D作BE⊥PA,DF⊥PA,垂足为E,F.
(1)请在上面图中画出不同情况下的草图,并猜想BE,DF,EF这三条线段之间有怎样的数量关系;
(2)请在上面的3个图中选择一个证明你的结论.
如图,在正方形ABCD中,点E在边AB上(点E与点A、B不重合),过点E作FG⊥DE,FG与边BC相交于点F,与边DA的延长线相交于点G.
(1)由几个不同的位置,分别测量BF、AG、AE的长,从中你能发现BF、AG、AE的数量之间具有怎样的关系?并证明你所得到的结论;
(2)连接DF,如果正方形的边长为2,设AE=x,△DFG的面积为y,求y与x之间的函数解析式,并写出函数的定义域;
(3)如果正方形的边长为2,FG的长为
5
2
,求点C到直线DE的距离.
第一页
上一页
93
94
95
96
97
下一页
最后一页
1242987
1242990
1242992
1242994
1242997
1242999
1243002
1243004
1243006
1243007