数学
如图,BD是⊙O的直径,AB与⊙O相切于点B,过点D作CD∥AO交⊙O于点C,AC与BD的
延长线相交于点E.
(1)试探究CE与⊙O的位置关系,并说明理由.
(2)猜想线段CD、AO、BD之间的关系.
(3)若CE=4,DE=2,求sin∠ECD.
如图,已知直角梯形ABCD中,AD∥BC,∠DAB=90°,且AD=DC;以A为圆心,AB为
半径作⊙A,交CA延长线于点E.
(1)求证:直线DC是⊙A的切线;
(2)若P是
BE
的中点,作PH⊥AE于H,若PH=5,
sin∠ABE=
3
5
,求AB的长.
如图,△ABC中,∠BAC的平分线AD交△ABC的外接圆⊙O于点D,交BC于点G,过点D作EF
∥BC,分别交AB、AC的延长线于点E、F.
(1)求证:EF为⊙O的切线;
(2)已知:CD=2,AG=3,求
AB
BE
的值.
已知:如图,△ABC中,以AB为直径的⊙O交BC于点P,且P为BC中点,PD⊥AC于点D.
(1)求证:PD是⊙O的切线;
(2)求证:AB=AC;
(3)若∠CAB=120°,BC=4,求⊙O的直径.
如图,AB是⊙O的直径,C为AB延长线上的一点,CD交⊙O于点D,且∠A=∠C=30°.
(1)求证:CD是⊙O的切线;
(2)请直接写出图中某3条线段之间的等量关系式,只要写出3个.(添加的辅助线不能用)
已知:如图,AB是⊙O的直径,AB=AC,且DE⊥AC.
(1)求证:DE是⊙O的切线;
(2)若∠C=30°,CD=20cm,求⊙O的半径.
如图,菱形ABCD中,AB=10,
sinA=
4
5
,点E在AB上,AE=4,过点E作EF∥AD,交CD于F,点P从点A出发以1个单位/s的速度沿着线段AB向终点B运动,同时点Q从点E出发也以1个单位/s的速度沿着线段EF向终点F运动,设运动时间为t(s).
(1)填空:当t=5时,PQ=
2
5
2
5
;
(2)当BQ平分∠ABC时,直线PQ将菱形的周长分成两部分,求这两部分的比;
(3)以P为圆心,PQ长为半径的⊙P是否能与直线AD相切?如果能,求此时t的值;如果不能,说明理由.
如图,⊙O是等边△ABC的外接圆,P是
BC
的中点,
①试判断过点C所作的切线与直线AB是否相交,并证明你的结论;
②设直线CP与AB相交于点D,过点B作BE⊥CD于E,证明BE是⊙O的切线;
③在②的条件下,若AB=10cm,求△BDE的面积.
(1)已知:如图,AC∥DE,AC=DE,BE=CF,求证:∠B=∠F.
(2)已知:如图,AB是⊙O的直径,AD是弦,∠DBC=∠A.
①求证:BC与⊙O相切;
②若OC是BD的垂直平分线,垂足为E,BD=6,CE=4,求AD的长.
如图,PA为⊙O的切线,B、D为⊙O上的两点,如果∠APB=60°,∠ADB=60°.
(1)试判断直线PB与⊙O的位置关系,并说明理由;
(2)如果D点是优弧AB上的一个动点,当PA=
6
3
且四边形ADBP是菱形时,求扇形OAMD的面积.
第一页
上一页
66
67
68
69
70
下一页
最后一页
1085605
1085608
1085610
1085612
1085614
1085616
1085618
1085619
1085621
1085624