答案

(1)证明:连接OD,
∵∠BAD=∠CAD,
∴弧BD与弧CD相等,
∴OD⊥BC,
∵EF∥BC,
∴OD⊥EF,所以,EF为⊙O的切线.
(2)解:∵∠DCG=∠BAD,∠BAD=∠DAC,
∴∠DCG=∠DAC
∵∠CDG=∠ADC,
∴△DCG∽△DAC,
∴
=,
设DG=x,则x(x+3)=4,取正根,得x=1,所以DG=1,
∵EF∥BC,
∴
==3.

(1)证明:连接OD,
∵∠BAD=∠CAD,
∴弧BD与弧CD相等,
∴OD⊥BC,
∵EF∥BC,
∴OD⊥EF,所以,EF为⊙O的切线.
(2)解:∵∠DCG=∠BAD,∠BAD=∠DAC,
∴∠DCG=∠DAC
∵∠CDG=∠ADC,
∴△DCG∽△DAC,
∴
=,
设DG=x,则x(x+3)=4,取正根,得x=1,所以DG=1,
∵EF∥BC,
∴
==3.