试题
题目:
(1)已知:如图,AC∥DE,AC=DE,BE=CF,求证:∠B=∠F.
(2)已知:如图,AB是⊙O的直径,AD是弦,∠DBC=∠A.
①求证:BC与⊙O相切;
②若OC是BD的垂直平分线,垂足为E,BD=6,CE=4,求AD的长.
答案
证明:(1)根据题意,AC∥DE,AC=DE,
即有∠ACB=∠DEF,又BE=CF,即BC=EF,
即△ABC≌△DFE,
故∠B=∠F.
(2)①证明:∵AB是直径,
∴∠D=90°,AD⊥BD.
∴∠A+∠ABD=90°.
又∵∠DBC=∠A,
∴∠DBC+∠ABD=90°,
即∠ABC=90°.
∴OB⊥BC.
∵OB是半径,
∴BC与⊙O相切.
②解:∵OC∥AD,∠D=90°,
∴∠OEB=∠D=90°.
∴OC⊥BD.(5分)
∴BE=DE=
1
2
BD=3.
∵BE⊥OC,∠OBC=90°,
∴△OBE∽△BCE.
∴
OE
BE
=
BE
EC
即
OE
3
=
3
4
,
∴
OE=
9
4
.
∵OA=OB,DE=EB,
∴AD=2EO=
9
2
.
证明:(1)根据题意,AC∥DE,AC=DE,
即有∠ACB=∠DEF,又BE=CF,即BC=EF,
即△ABC≌△DFE,
故∠B=∠F.
(2)①证明:∵AB是直径,
∴∠D=90°,AD⊥BD.
∴∠A+∠ABD=90°.
又∵∠DBC=∠A,
∴∠DBC+∠ABD=90°,
即∠ABC=90°.
∴OB⊥BC.
∵OB是半径,
∴BC与⊙O相切.
②解:∵OC∥AD,∠D=90°,
∴∠OEB=∠D=90°.
∴OC⊥BD.(5分)
∴BE=DE=
1
2
BD=3.
∵BE⊥OC,∠OBC=90°,
∴△OBE∽△BCE.
∴
OE
BE
=
BE
EC
即
OE
3
=
3
4
,
∴
OE=
9
4
.
∵OA=OB,DE=EB,
∴AD=2EO=
9
2
.
考点梳理
考点
分析
点评
专题
切线的判定与性质;全等三角形的判定与性质.
(1)利用全等三角形的判定定理可判定△ABC≌△DFE,即可得出∠B=∠F.
(2)①要证BC与⊙O相切;只需证明OB⊥BC即可,根据角之间的互余关系易得证明;
②根据平行线的性质可得OC⊥BD,进而可得△OBE∽△BCE,可得出比例关系式,
OE
BE
=
BE
EC
代入数据即可得到答案.
本题考查先是考查了全等三角形的判定,又考查了切线的判定及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.
证明题;数形结合.
找相似题
(2012·桂平市三模)如图,直线AC∥BD,⊙O与AC和BD分别相切于点A和点B.点M和点N分别是AC和BD上的动点,MN沿AC和BD平移.⊙O的半径为1,∠1=60°.下列结论错误的是( )
(2010·武汉模拟)如图正方形ABCD中,以D为圆心,DC为半径作弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;③EP⊥PN;④ON∥AB,其中正确的是( )
在正方形ABCD中,E为AD中点,AF丄BE交BE于G,交CD于F,连CG延长交AD于H.下列结论:
①CG=CB;②
HE
BC
=
1
4
;③
EG
GF
=
1
3
;④以AB为直径的圆与CH相切于点G,其中正确的是
①②③④
①②③④
.
如图,以△ABC的直角边AB为直径的半圆O与斜边AC交于点D,E是BC边的中点.若AD、AB的长是方程x
2
-6x+8=0的两个根,则图中阴影部分的面积为
4
3
-
4
3
π
4
3
-
4
3
π
.
(2013·雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)