数学
(2013·建邺区一模)把一个可以自由转动的均匀转盘3等分,并在各个扇形内分别标上数字(如图),小明和小亮用图中的转盘做游戏;分别转动转盘两次,若两次数字之积是偶数,小明获胜,否则小亮获胜.你认为游戏是否公平?请说明理由.
(2013·高港区二模)小明和小刚做游戏,用一个不透明袋子,里面装有形状、大小完全相同的2个红球和2个白球,并充分搅匀,让小刚从中摸出一个球不放回,再去摸第二个球,如果两次摸出的球颜色相同小刚赢,反之小明赢.你认为这种游戏是否公平?请你借助树状图或列表的方法,运用概率的知识予以说明.
(2013·成都一模)(1)计算:
2cos30°-(
1
3
)
-1
+(-2
)
2
×(-1
)
0
-|-
12
|
(2)解方程:2x
2
-5x-7=0
(3)有两个可以自由转动的均匀转盘A、B,均被分成4等份,并在每份内都标有数字(如图所示).李明和王亮同学用这两个转盘做游戏.阅读下面的游戏规则,并回答下列问题:
①用树状图或列表法,求两数相加和为零的概率;
②你认为这个游戏规则对双方公平吗?若公平,请说明理由;若不公平,请修改游戏规则中的赋分标准,使游戏变得公平.
(2012·市南区模拟)小明和小亮利用摸球做游戏,将除颜色外完全相同的六个小球分别放到两个袋子中,一个袋子中放两个红球一个白球,另一个袋子中放一个红球两个白球.两人随机从两个袋子中分别出一个小球,如果摸出两个小球是异色,则小明得1分;摸出两个小球是同色,则小亮得1分
(1)用树状图或列表法求出摸出异色球和同色球的概率.
(2)游戏对于双方是否公平?若不公平,如何修改?若公平,说明理由.
(2012·溧水县二模)小明与小红共同发明了一种“字母棋”,进行比胜负的游戏.他们用三种字母做成5只棋子(棋子除字母外其它均相同),其中A棋1只,B棋2只,C棋2只.
“字母棋”的游戏规则为:随机从5只棋子中摸出两只棋子,若摸到A棋,则小明胜;若摸到两只相同的棋子,则小红胜.其余情况则为平局.你认为这个游戏公平吗?请说明理由,若不公平请修改游戏规则使游戏公平.
(2012·金牛区三模)某班开展为班上捐书活动,共捐得科技、文学、教辅、传记四类图书,分别用A、B、C、D表示,下图是未制作完的捐书数量y(单位:百本)与种类x(单位:类)关系的条形统计图,根据统计图回答下列问题:
(1)若D类图书占全部捐书的10%.请求出D类图书的数量(单位:百本),并补全统计图;
(2)若有一本图书,梅丽、李进都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若梅丽掷得着地一面的数字比李进掷得着地一面的数字小,书给梅丽,否则给李进.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
(2012·邗江区一模)现有一张演唱会的门票,小明与小华为了决定谁拿这张门票去看开幕式,小华设计了一种方案如下:如图,有A、B两个转盘,其中转盘A被分成3等份,转盘B被分成4等份,并 在每一份内标上数字.两人同时分别转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘
指针指向的数字记为y,从而确定点P的坐标为P(x,y).
(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;
(2)小华提议,在(1)的基础上,若点P落在反比例函数
y=
4
x
图象上则小明赢;否则,自己赢.你觉得小明的提议对双方公平吗?请说明理由.
(2012·常州模拟)我市在全民健身活动中准备为青少年举行一次网球知识讲座,小明和妹妹都是网球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:通过做游戏决定谁去.游戏规则是:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同.游戏时先由妹妹从口袋中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小明从口袋中摸出1个乒乓球,记下颜色.如果姐弟二人摸到的乒乓球颜色相同,则妹妹赢,否则小明赢.
(1)请用树状图或列表的方法表示游戏中所有可能出现的结果.
(2)这个游戏规则对游戏双方公平吗?请说明理由.
(2012·安溪县质检)四张质地相同的卡片上分别写有数字1,-2,-3,-4,将卡片洗匀后,背面朝上放置桌面上,甲、乙两人进行如下抽卡游戏:甲先抽一张卡片不放回,乙再抽一张卡片.
(1)若甲抽到的卡片恰为数字-3,则乙抽到卡片的数字为负数的概率是
2
3
2
3
;
(2)将甲、乙两人抽取卡片的数字分别作为点M的横坐标、纵坐标.甲、乙约定:若点M在第三象限,则甲胜;反之则乙胜.你认为这个游戏是否公平?用画树状图或列表的方法表示所有等可能结果,并加以说明.
(2011·青岛二模)将三个除号码外完全相同的小球放入不透明的盒子中,小球上分别标有数字1,2,3,游戏者从中随机摸出一球,记下数字后放回盒中,充分摇匀,再随机摸出一球并记下数字.如果摸得的两球所标数字之积为奇数,那么游戏者获胜;否则,其游戏结果为输.你认为该游戏规则是否公平?请画树状图或列表予以说明.
第一页
上一页
89
90
91
92
93
下一页
最后一页
1188118
1188120
1188123
1188125
1188127
1188128
1188131
1188133
1188135
1188137