数学
如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线y=-
3
2
x+b与y轴交于点P,与边OA交于点D,与边BC交于点E.
(1)若直线y=-
3
2
x+b平分矩形OABC的面积,求b的值;
(2)在(1)的条件下,当直线y=-
3
2
x+b绕点P顺时针旋转时,与直线BC和x轴分别交于点N、M,问:是否存在ON平分∠CNM的情况?若存在,求线段DM的长;若不存在,请说明理由;
(3)在(1)的条件下,将矩形OABC沿DE折叠,若点O落在边BC上,求出该点坐标;若不在边BC上,求将(1)中的直线沿y轴怎样平移,使矩形OABC沿平移后的直线折叠,点O恰好落在边BC上.
如图:在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA=6,OB=12,C是线段AB的中点,点D在线段OC上,OD=2CD.
(1)求C点的坐标;
(2)求直线AD的解析式;
(3)若直线AD交y轴于E,试说明CE与OA的位置关系.
如图,在平面直角坐标系中,经过原点的直线a与x轴的正半轴的夹角为α,且sinα=
3
5
,A(0,4),动点P、Q分别从A、O点同时出发,点P的运动速度是每分钟1个单位,终点是O,点Q的运动速度是每分钟2个单位,沿x轴的正方向运动,当点P到达终点O时,点Q也停止运动,设运动时间为t分钟.
(1)求直线a的解析式;
(2)当t为多少分钟时,PQ⊥a;
(3)过P作PM∥x轴交直线a于M.①设△MQO的面积为S,试写出S与t之间的函数关系,并求出当s=3时,t的值;②在P、Q运动过程中,你能猜想△MOQ为等腰三角形有多少种情况?并选择两种你认为简单的情况求出t的值.
在平面直角坐标系中,等边三角形OAB的边长是2
3
,且OB边落在x轴的正半轴上,点A落在第一象限、将△OAB折叠,使点A落在x轴上,设点C是点A落在x轴上的对应点,
(1)当△OAB沿直线y=kx+b折叠时,如果点A恰好落在点C(0,0),求b的值;
(2)当△OAB沿直线y=kx+b折叠时,点C的横坐标为m,求b与m之间的函数关系式;并写出当b=
1
2
时,点C的坐标;
(3)当△OAB沿直线y=kx+b折叠时,如果我们把折痕所在直线与△OAB的位置分为如图1、图2、图3三种情形,请你分别写出每种情形时b的取值范围(将答案直接填写在每种情形下的横线上).
如图,直线y=-2x+4分别与x轴、y轴相交于点A和点B,如果线段CD两端点在坐标轴上滑动(C点在y轴上,D点在x轴上),且CD=AB.
(1)当△COD和△AOB全等时,求C、D两点的坐标;
(2)是否存在经过第一、二、三象限的直线CD,使CD⊥AB?如果存在,请求出直线CD的解析式;如果不存在,请说明理由.
如图①,将两块全等的直角三角形纸板摆放在坐标系中,已知BC=4,AC=5.
(1)求点A坐标和直线AC的解析式;
(2)折三角形纸板ABC,使边AB落在边AC上,设折痕交BC边于点E(图②),求点E坐标;
(3)将三角形纸板ABC沿AC边翻折,翻折后记为△AMC,设MC与AD交于点N,请在图③中画出图形,并求出点N坐标.
已知如图,一次函数y=ax+b图象经过点(1,2)、点(-1,6).求:
(1)这个一次函数的解析式;
(2)一次函数图象与两坐标轴围成的面积.
已知一次函数图象经过点(3,5),(-4,-9)两点.
(1)求一次函数解析式;
(2)求图象和坐标轴围成三角形面积.
如图,在平面直角坐标系xOy中,一次函数
y
1
=-
2
3
x+2
与x轴、y轴分别相交于点A和点B,直线y
2
=kx+b(k≠
0)经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分.
(1)求△ABO的面积;
(2)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式.
已知一次函数y=kx+b的图象经过点P(0,-3),且与函数
y=
1
2
x+1
的图象相交于点
A(
8
3
,a)
.
(1)求a的值;
(2)若函数y=kx+b的图象与x轴的交点是B,函数
y=
1
2
x+1
的图象与y轴的交点是C,求四边形ABOC的面积(其中O为坐标原点).
第一页
上一页
21
22
23
24
25
下一页
最后一页
1023394
1023396
1023398
1023400
1023402
1023405
1023407
1023409
1023411
1023413