数学
如图,△ABC中,AD是BC边上的高线,BE是一条角平分线,它们相交于点P,已知∠EPD=125°,求∠BAD的度数.
如图,EF⊥CD,F为垂足,∠1=70°,∠GEF=20°,求证:AB∥CD.
如图,在△ABC中,∠ACB=90°,F是AC延长线上一点,FD⊥AB,垂足为D,FD与BC相交于点E,∠BED=55°.求∠A的度数.
如图,在Rt△ABC中,CD是斜边AB的高,求证:∠BCD=∠A.
如图已知在Rt△ABC中,∠BAC=90°,E在斜边BC上,CE=CA,求证:∠BAE=
1
2
∠ACB.
阅读下面的情景对话,然后解答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形中是否存在奇异三角形呢?
问题(1)根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?
问题(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
问题(3)如图,以AB为斜边分别在AB的两侧作直角三角形,且AD=BD,若四边形ADBC内存在点E,使得AE=AD,CB=CE.
①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠DBC的度数.
等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;
(1)如图(1),若A(0,1),B(2,0),求C点的坐标;
(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE
(3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由.
如图,∠C=∠D=90°,AD交BC于点E.∠CAE与∠DBE有什么关系?为什么?
已知直角三角形的一条直角边和斜边,求作此直角三角形.
(要求:写出已知,求作,结论,并用直尺和圆规作图,保留作图痕迹,不写作法及证明)
如图,将两块直角三角尺的直角顶点O叠放在一起.
(1)若∠BOC=40°,试求∠AOD的度数.
(2)若∠AOD=135°,试求∠BOC的度数.
(3)若∠BOC=α、∠AOD=β,请写出α与β的大小关系式,并说明理由.
第一页
上一页
104
105
106
107
108
下一页
最后一页
1062719
1062721
1062722
1062725
1062727
1062729
1062732
1062734
1062735
1062738