数学
(2004·盐城)如图,甲、乙两楼相距36m,甲楼高度为30m,自甲楼楼顶看乙楼楼顶的仰角为30°,问乙楼有多高(结果保留根式)
.
(2004·四川)如图,小莉的家在锦江河畔的电梯公寓AD内,她家的河对岸新建了一座大厦BC,为了测量大厦的高度,小莉在她家的楼底A处测得大厦顶部B的仰角为60°,爬上楼顶D处测得大厦顶部B的仰角为30°,已知电梯公寓高82米,请你帮助小莉计算出大厦的高度BC及大厦与电梯公寓间的距离AC.
(2004·青岛)在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):
(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;
(2)量出测点A到旗杆底部N的水平距离AN=m;
(3)量出测倾器的高度AC=h.
根据上述测量数据,即可求出旗杆的高度MN.如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图2)的方案:
(1)在图2中,画出你测量小山高度MN的示意图(标上适当的字母);
(2)写出你的设计方案.
(2004·南平)“玉女峰”是武夷山最秀丽的山峰,她亭亭玉立于九曲溪边,为测得峰顶A到河面B的
高度h,当游船行至C处时测得峰顶A的仰角为α,前进m米至D处时测得峰顶A的仰角为β(此时C、D、B三点在同一直线上).
(1)用含α、β和m的式子表示;
(2)当α=48°,β=66°,m=50米时,求h的值.(精确到1米)
(2004·茂名)小刚和小强两位同学参加放风筝比赛.当他俩把风筝线的一端固定在同一水平的地面时,测得一些数据如下表:
假设风筝线是拉直的,试比较他俩谁放的风筝较高?高多少米?(精确到0.1米)
(供参考数据:
2
≈1.4142,
3
≈1.7321,
5
≈2.2361).
(2004·昆明)如图,初三年级某班同学要测量校园内国旗旗杆的高度,在地面的C点用测角器测得旗杆顶A点的仰角∠AFE=60°,再沿直线CB后退8米到D点,在D点又用测角器测得旗杆顶A点的仰角∠AGE=45°;已知测角器的高度是1.6米,求旗杆AB的高度.(
3
的近似值取1.7,结果保留小数)
如图,已知建筑物AB高21米,从另一建筑物CD的顶端C处测得AB的顶部A点的仰角为45°,又测得建筑物AB离地面1米的一阳台E处点的仰角为30°,求建筑物CD的高.(
3
≈1.73,结果精确到0.1米)
某校数学课题学习小组在“测量旗杆高度”的活动中,站在教学楼上的A处 测得旗杆低端C的俯角为30°,测得旗杆顶端D的仰角为45°,如果旗杆与教学楼的水平距离BC为6m,那么旗杆CD的高度是多少?(结果保留根号)
如图,小明所在学习小组的同学在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°.已知测角仪器高CE=1.4米,CD=26米.求塔高AB.
(参考数据:
2
=1.414 ,
3
=1.732
)
如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为45°,测得岸边点D的俯角为29°,又知河宽CD为60米.现需从河对岸点C拉一条笔直的缆绳AC,求缆绳AC的长.(精确到0.1).
参考数据:sin29°≈0.48,cos29°≈0.87,tan 29°≈0.55,tan61°≈l.80,
2
≈1.41.
第一页
上一页
73
74
75
76
77
下一页
最后一页
178698
178700
178702
178703
178705
178706
178709
178711
178712
178714