数学
(2013·洛阳二模)如图是某地地质科考队在海拔高度CE为5000米的雪山进行科学研究,已知科考队的营地B在海拔1000米处,峰顶为C点,坡面BC的坡角∠CBF=45°,坡面AB的坡角∠BAE=30°,一名队员在B处测得从C处开始有雪崩发生,雪崩在坡面BC上平均速度为每秒80米.
(1)求雪崩到达营地B的时间.
(2)如果坡面AB上安全点D的海拔高度为700米,科考队迅速撤离到安全点D,若雪崩在坡面AB上平均速度为每秒30米,科考队的速度至少为多少?(说明:(1)(2)的计算结果精确到0.1米,参考数据:
2
≈1.414
,
3
=1.732
)
(2013·黄埔区一模)为方便市民低碳生活绿色出行,市政府计划改造如图所示的人行天桥:天桥的高是10米,原坡面倾斜角∠CAB=45°.
(1)若新坡面倾斜角∠CDB=28°,则新坡面的长CD长是多少?(精确到0.1米)
(2)若新坡角顶点D前留3米的人行道,要使离原坡角顶点A处10米的建筑物不拆除,新坡面的倾斜角∠CDB度数的最小值是多少?(精确到1°)
(2013·澄江县二模)如图,水库大坝的横断面是梯形,背水坡AB的坡角∠BAD=60°,AB=20
3
m,为加强大坝强度需新增加背土,将背水坡背土后坝底从原来的A处向后水平延伸到F处,新背水坡BF的坡角∠F=45°,若大坝全长200m,求新增背土的方数?(提示:均匀柱体的体积等于底面积乘高;结果精确到1m
3
,取
3
≈1.732
).
(2013·本溪二模)如图,电线杆AB铅垂地矗立在坡角是15°的山坡上,太阳光与山坡成∠ACB=60°时,电线杆AB在山坡上的影子AC长8米.求电线杆AB的长.
(2012·湛江模拟)如图,有一段斜坡BC长为30米,坡角∠CBD=30°,为方便车辆通行,
现准备把坡角降为15°.
(1)求坡高CD;
(2)求斜坡新起点A到点D的距离(结果保留根号).
(2012·新昌县模拟)清明扫墓,小玲和小明分别从A点出发沿斜坡AB,AC到达山上的B点、C点,路线如图所示.
已知A点海拔121米,斜坡AB,AC的长分别为104米,150米,在B点和C点测得A点的俯角分别为36.8°,30°.
(1)求斜坡AB的坡度;
(2)试比较点B和点C的海拔高低.
(精确到1米,参考数据sin36.8°≈0.60,cos36.8°≈0.80,tan36.8°≈0.75)
(2012·吴中区二模)2012年4月11曰16时38分北苏门答腊西海岸发生里氏8.6级地震,并伴有海啸.山坡上有一棵与水平面垂直的大树,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=6m.
(1)求∠DAC的度数;
(2)求这棵大树折断前的高度?
(结果精确到个位,参考数据:
2
≈1.4,
3
≈1.7,
6
≈2.4).
(2012·衢州二模)如图是某区“平改坡”工程中一种坡屋顶的设计图.已知原平屋顶的宽度AB为8米,两条相等的斜面钢条AC、BC夹角为110°,过点C作CD⊥AB于D.
(1)求坡屋顶高度CD的长度;
(2)求斜面钢条AC的长度.(长度精确到0.1米)
(2012·曲阜市模拟)为缓解交通压力,节约能源减少大气污染,上海市政府推行“P+R”模式(即:开自驾车人士,将车开到城郊结合部的轨道车站附近停车,转乘轨道交通到市中心).市郊某地正在修建地铁站,拟同步修建地下停车库.
如图,是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D、F,坡道AB的坡度i=1:3,AD=9米,C在DE上,DC=0.5米,CD是限高标志牌的高度(标志牌上写有:限高_____米).如果进入该车库车辆的高度不能超过线段CF的长,计算该停车库限高多少米.(结果精确到0.1米)
(提供可选用的数据:
2
≈1.41,
3
≈1.73,
10
≈3.16
)
(2012·南开区二模)如图,设计建造一条道路,路基的横断面为梯形ABCD,设路基高为h,两侧的坡角分别为α、β.已知h=2米,α=45°,tanβ=
1
2
,CD=10米.求路基底部AB的宽.
第一页
上一页
31
32
33
34
35
下一页
最后一页
177895
177896
177898
177900
177902
177904
177906
177907
177909
177911